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ABSTRACT

The detection of slow moving targets by a moving bistatic pulsed
Doppler radar system is addressed. Optimum clutter rejection is
achieved using space-time adaptive processing (STAP). This re-
quires estimating the clutter-plus-noise covariance matrix using a
sequence of snapshots at successive ranges. For most monostatic
and for all bistatic radar configurations, these snapshots are range-
dependant. The estimator is then biased and not accurate. A com-
pensation method originally developped for the monostatic case
is applied to selected bistatic configurations and its performance
assessed in these new conditions.

1. INTRODUCTION

The detection of slow moving targets using a moving pulsed Doppler
radar system is a problem of great interest. One distinguishes be-
tween monostatic (MS) configurations, where the radar transmitter
and receiver are colocated and bistatic (BS) configurations, where
they are physically separated. In either case, a train of coherent
pulses is transmitted and the corresponding returns are sensed at
each of the elements of a linear antenna array.

Optimum clutter rejection is achieved by using a collection of tech-
niques known as space-time adaptive processing (STAP). While
STAP research was initially developped for MS configurations [1,
2], it is now increasingly directed to BS configurations [3].

The adaptive weights used by STAP are computed using a clutter-
plus-noise covariance matrix estimated from data collected at suc-
cessive ranges. An accurate estimate of this matrix can be obtained
only if the structure of the clutter spectrum remains unchanged
over the range interval used for the estimation. The most signifi-
cant feature of the clutter spectrum is a “clutter ridge” [1]. In the
MS sidelooking (SL) configuration, where the antenna is aligned
with the radar velocity vector, the position, shape and size of this
ridge remain constant as the range changes. In all other MS config-
urations and in all BS configurations, the ridge appearance changes
considerably with range. This is the so-called “range-dependence
problem” in STAP.

Two approaches have been proposed so far to deal with this prob-
lem. The “Doppler-warping” method [4] works well in near-SL
MS configurations. It has been applied to BS configurations but the
reported performance is poor [5]. The scaling method [6] was ini-
tially developped for arbitrary MS configurations, where it works
fairly well. The goal of the present paper is to test the same method
on selected BS configurations.

2. BISTATIC GEOMETRY

Figure 1 shows a typical bistatic geometry, which consists of a
transmitter, a receiver and a scatterer, respectively located at � , �
and � . The transmitter and the receiver are typically mounted on
their own separate platforms, either airborne or spaceborne. The
scatterer can be a target or an elementary clutter region.
The origin of the coordinate system �
	���
������ is choosen to coincide
with � . Its orientation is such that the 	 -axis points in the same
direction as the transmitter velocity vector � � and that the � -axis
points vertically up. The receiver velocity vector � � is assumed
to be located in a horizontal plane and to make an angle � � with
respect to the 	 -axis. Clearly, we assume � ����� .
The receiver antenna is linear. It is assumed to be located in a
horizontal plane and to make an angle � with respect to the 	 -axis.
The angular positions of � measured from the antenna axis, � �
and � � are respectively given by the “cone” angles � , � �� and � �� .
The bistatic range ��� is the distance from � to � to � .�
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Figure 1: Elements of a BS radar configuration.

3. DIRECTION-DOPPLER CURVES

In the present case, the radar system is expected to determine at
least three basic parameters for each scatterer of interest : the an-
gular position � , the BS range � � and the relative velocity / � (mea-
sured with respect to the receiver). The related parameters that are
more directly measured from the radar returns are the spatial fre-
quency 021 [2] 0 1 �4365�78:9#;�< �=�

S02-1



Proc.
�����

IEEE Benelux Signal Processing Symposium (SPS-2002), Leuven, Belgium, March 21–22, 2002

where 3 8 is the wavelength, the round-trip delay >2� � ���@?BA ( A is
the speed of the light) and the Doppler frequency 0 � , which, for a
stationnary scatterer (such as a clutter patch) is [2]0 � �43 5�78 / � 9C;�< � ���D 3 5678 / � 9#;E< � ��GF
The parameters � , ��� and / � can easily be computed from the
parameters 0 1 , >#� and 0 � .
For any given BS configuration and for any given �H� , all station-
nary scatterers at the selected �H� map onto a curve showing the
relation that exists between 0 1 and 0 � for any such scatterer. Each
subfigure in Fig. 2 corresponds to a different BS configuration and
each curve within each subfigure to a different �H� . Each curve is
called a “direction-Doppler (DD)” curve. It is implicitely param-
eterized by the position of each scatterer in a horizontal plane at
some specified height and at the ��� of interest.
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Figure 2: Examples of DD curves for different BS configurations
(with parameters given above) and BS ranges �H� (of e2f � , ghe � , g�i �
and j �E� km).

The plots of Fig. 2 show that the relationship between 0 1 and 0 �
vary significantly, not only from one BS configuration to another
(as in the MS case), but also from one range to another (in contrast
to the MS SL case). Finally, one can show that there is a direct
relation between the DD curve and the “clutter ridge” observed in
the clutter spectrum discussed below.

4. OPTIMUM STAP PROCESSOR

A train of k coherent pulses is transmitted, the returns are sensed
at each of the l antenna-array elements, and the sensed returns are
sampled at a number of discrete ranges covering the range interval
of interest. The signal samples are thus equispaced in time, space
and range. The result is a sequence of knmol data arrays at
successive ranges. Each such array is called a “snapshot”.

It can be shown that the kpmal snapshot corresponding to a sin-
gle scatterer (target or clutter patch) with normalized spatial and
Doppler frequencies q�1 � � 3 8 ?Eg��r021 and q � � � 3 8 ?h�
/ � D / � ����0 �
(where / � �ts � � s and / � �us � � s ) and with range ��� can be
written as a kvlwmxe vector [2]y �zq 1 �{q � � �}| � � �zq 1 �Nq � �@�
where | � comes from the radar equation and � �zq 1 ��q � � is the k4l~me steering vector � �zq�12�{q � � ��� �zq � �T��� �zqE1#�@� (1)

where � is the Kronecker product and � �zq 1 � and � �zq � � are thel:m�e spatial and k�mxe temporal steering vectors given by� �zq 1 � � ��e F#F#F{�N�C����� JN� F#F#F��@�@���P� J2�d� 5�7�� � � (2)� �zq � � � ��e F#F#F{�N�C����� $#� F#FCF{�N�C���P� $ �M� 5�7�� � � F (3)

The clutter snapshot y 8 �zq�12�{q � � is found by integrating y �zq�1B�{q � �
over the isorange curve defined by the intersection of the isorange
ellipsoid with the ground and parameterized by some angle � ,
which is the angle running along the curves of Fig. 2. One hasy 8 �zq 1 �{q � � �4� ���� | 8 �z�T��� �zq 1 �z�T�@��q � �z�T�����h� F
In general, the power spectral density (PSD) of a stationnary dis-
crete random process is the Fourier transform (FT) of its autocor-
relation sequence. Since we do not generally have access to the
full autocorrelation, we must use spectral estimation methods.
The simplest approach in the case of clutter is to take the 2D dis-
crete space-time FT of the k4l�m�k4l correlation matrix� 8 ����� y 8 y �82� F
This gives a poor-resolution estimate of the clutter PSD. Among
other approaches, the minimum variance estimator (MVE) works
particularly well in STAP [1]. Clutter PSDs computed with either
method shows a concentration of energy along a particular “curve”
in the array representing the PSD. The support of this “clutter
ridge” is in direct correspondence with the related DD curve in
the continuous ��0 1 �@0 � � -plane.
The STAP weights providing optimum clutter rejection are given
by the k4l:mxe vector [7]�

opt �zq�12�{q � � � � 567 � �zqE1B�{q � �@� (4)

where
�

is the sum of the covariance matrices
� 8 for the clutter

and
� � � � for a noise assumed to be spatially and temporally

white (Jammers could also be considered). Since
� 8 generally

varies with ��� , � 8 must be estimated for each ��� and the opti-

mum weights must also be computed for each ��� . We assume that
successive discrete ranges are indexed with the integer ¡ . At each¡ , � is ideally estimated using the �zl ��¢ e2��?�g snapshots on either

side of ¡ , i.e.,£� �
¡P� � el �¥¤¦B§P¨R© � �zª=�@� � �zª=� � y �zª=� y � �zªr�@� (5)

where « � is the appropriate set of indices and y �zª=� the received
snapshot y corresponding to range ª . An unbiased estimator can
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be obtained if the clutter ridge is range-independant. However, this
happens only for MS SL configurations.
The performance of a processor using arbitrary weights � is mea-
sured by the signal-to-interference-plus-noise (SINR) loss

LSINR � SINR
SINR � � ¬¬ � � � ¬¬ �� � � � � �C�
� � � � �

where SINR � is the SINR in the absence of interference (clutter).
The values of LSINR range from a minimum equal to the clutter-
to-noise ratio to a maximum of one, indicating that the processor
performance is not degraded by clutter. Optimum (theorical) per-
formance is achieved with � � � ­�®°¯ . In practice, the processor
performance is degraded by the losses due to the estimation of

�
and to the range dependence of the clutter ridge.

5. DOPPLER-WARPING METHOD

The Doppler-warping method was initially developped for near-SL
MS configurations. It applies a linear transformation, described by
a kvl�mak4l matrix ± �zªr� , to each snapshot y �zª=� [4]. The goal
of ± �zªr� is to apply a common Doppler shift ²_³ $ to all spatial
frequencies 0 1 so as to bring the clutter ridge in registration for all
ranges. Whereas the compensation is perfect at a particular 0E1 , it is
approximate at any other 0 1 . Performance degrades as one moves
away from the SL configuration in the MS case and is poor in the
BS case [5].

6. SCALING METHOD

The scaling method was initially developped for all MS config-
urations [6]. It applies a transformation to each matrix

� �zª=� �y �zªr� y � �zª=� prior to its use in the calculation of
£�

in Eq. (5), this

to bring into registration the ª th clutter ridge onto the ¡ th one.
First, we develop and test the transformation on the (continuous)
DD curves. Then, we adapt it so it can be applied to the (discrete)
matrix

� �zª=� . It is important to understand that, in the first case, we

develop the method in the space-time frequency domain, whereas,
in the second, we adapt it to work directly in the space-time do-
main. Indeed, we do not have access to the true FT domain if we
apply spectrum estimation methods!
We use ´ � to denote the reference DD curve at ¡ and ´ ¦ to denote
curves at neighboring ª ’s. We want to bring all ´ ¦ ’s into regis-
tration with ´ � . To do so, we first rename the original variables��021B�@0 � � for each curve as ��0¶µ1 �@0rµ� � . All curves ´ ¦ are then trans-
formed into the common system of coordinates ��0 1 �N0 � � , which is
also that of ´ � . This is done by using a particular affine transfor-
mation ± �zªr� . Using homogeneous coordinates for convenience,
we have ��0 µ1 0 µ� e°� � � ± �zª=�T��0 1 0 � e2� � F
The particular affine transformation used corresponds to first bring-
ing the “center” (defined here to be the center of the curve’s bound-
ing rectangle) of each ´ ¦ to the origin of its ��0¶µ1 �N0rµ� � axes, then
scaling this translated curve, possibly inequally along 0 µ1 and 0 µ� ,
and finally bringing the scaled curve to the “center” of ´ � . Thus,± �zª=� is of the form·¸ e � ²¹�³ J� eº²»�³ $�¼� e

½¾t·¸ �6³ J � �� �T³ $ �� � e
½¾t·¸ e � ² 7³ J� e¿² 7³ $�¼� e

½¾ �

where ²»À³ J and ²»À³ $ are the space and time offsets for the Á th trans-
lation and � ³ J and � ³ $ the space and time scaling factors.

Since the algorithm was initially developped for MS configura-
tions, where all DD curves in a given range interval are exact
scaled versions of each other, the algorithm was not expected to
work perfectly in all BS cases. Figure 3 shows the result of apply-
ing the scaling method to the BS DD curves of Fig 2. Clearly, the
more similar the original curves, as in Fig. 2(a) and (b), the better
the results.
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Figure 3: Result of application of the scaling method to the DD
curves of Fig. 2. The dotted curve, which may be difficult to see,
is the reference curve ´ � corresponding to ��� � e°f � km.

Since the clutter ridges of PSDs are the practical equivalent of the
DD curves, it is tempting to apply the above method to them. In
practice, however, we only have access to the matrices

� �zª=� �y �zª=� y � �zªr� F The question is thus how to adapt the
� �zª=� ’s to achieve

the desired registration of the clutter ridges. One of the problems is
that the estimators, such as the MVE, provide a nonlinear relation
between space-time and its spectral domain. It is thus not obvious
how to express the particular spectral-domain affine transforma-
tion ± �zªr� in the space-time domain of the

� �zªr� ’s. The procedure

used is as follows.

Each
� �zª=� is regarded as a 2D sequence with finite support and

is converted to a 2D continuous function by applying an interpola-
tion filter to the elements of the sequence. The interpolation in the
space-time domain corresponds to applying a window ÂÃ��ÄÅ�{ÆÇ�
in the Fourier or spectral domain. This window eliminates the pe-
riodic replicas of the central 2D “period” of the spectrum. If these
replicas were not eliminated, they would move into the central “pe-
riod” of the spectrum following a scaling operation corresponding
to a contraction of the spectrum. The best results were obtained by
using a 2D Kaiser window [8]

È ��ÄÅ�NÆÇ� � È 7 ��ÄH� È � ��ÆÇ�@�
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where

È À ��ÂÉ� �ËÊÌ ÍwÎ�ÏrÐMÑrÒ 7�5 ��ÓÓÅÔ �[ÕEÖP×]Ø ÕNÙÎ�Ï � Ñ � s Â s�Ú Â�³� otherwise �
where Û � � F � is the zeroth-order modified Bessel function of the first
kind. Â�³ is the limit of the visible clutter spectrum on the Ä andÆ axes and is thus equal to � F i (for the two axes) for normalized
frequencies. The best choice for | is found to be three.
The continuous 2D function obtained following interpolation is
then subjected to the transformations corresponding to the trans-
lations and scaling that we want to achieve in the spectral domain.
The transformatios that are needed are the phase shifts and scaling
suggested by the following Fourier transform pairs0��
	���
=� �N�@��� �dÜ ÏCÝ2Þ�ß{Ï@à �âá ã �
ä ¢ ä � ��/ ¢ / � �0�� 	� Ý � 
� à � á � Ý � à ã ��� Ý ä��V� à /å� F
The transformed 2D function is then resampled on a grid identical
to that of the original matrix

� �zª=� . The whole transformation

described can be represented by some operator � ¦hæ F ç , so that� 1 �zªr� � � ¦»è � �zªr��é F
Figure 4 illustrates the transformation of the power spectrum of a
particular

� �zª=� following the application of the operator � ¦åæ F ç .
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Figure 4: Power spectrum (a) before and (b) after scaling for con-
figuration (d) in Fig. 2 and |a� � .
Finally, the estimate

£� �
¡�� of the desired covariance matrix
�

for

range ¡ is £� �
¡P� � el � ¤¦B§P¨R© � ¦ è � �zª=��éê�
where « � �v� ¡ D e�� FCF#F ��¡ D l � � . Note that we currently use thel � ranges following ¡ .
The performance of the scaling method is illustrated in Fig. 5. It
is clear that the method leads to a reduction of the width of the
clutter notch. However, a reduction of the depth of the notch is
also observed. This appears to be a consequence of the use of the
Kaiser window.

7. CONCLUSION

The rejection of clutter in bistatic STAP is a challenging prob-
lem. This is due to the range-dependence of the direction-Doppler
curves and of the corresponding clutter ridges. The scaling method
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Figure 5: SINR losses for the configuration (a) of Fig. 2.

discussed here is a compensation method originally developped for
monostatic STAP. This paper demonstrates that this method works
well in many, but not all, bistatic configurations. The method relies
on a particular form of the affine transformation. We are currently
investigating the use of a general affine transformation and of other
more general transformations.
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