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Abstract
This work concerns 2D SPECT imaging with uniform attenuation in the activity
region. In this paper, it is shown that exact and stable reconstruction does not
require the data to be known over 360◦ as has been previously assumed. An
angular range of 180◦ is sufficient in parallel-beam geometry. A reconstruction
formula which uses only data on a half-turn is provided with implementation
details. Simulations are performed to support the mathematical result.

1. Introduction

This work concerns two-dimensional (2D) image reconstruction in single photon emission
computed tomography (SPECT) using parallel-beam collimators.

The objective of 2D SPECT imaging is to visualize the concentration of a radioactive
tracer within the slice of a 3D body. To achieve this goal, the number of photons emitted
along different directions within the slice is measured to obtain information on the activity
distribution. In this study, these measurements are described using the line-integral model of
the attenuated Radon transform. Any deviation from that model due to physical effects such
as Poisson noise, scattering, or detector response, is viewed as a source of data noise. The
2D image to be reconstructed is either denoted as f , f (x) or f (x, y), with x = (x, y). It is
assumed that f is bounded and compactly supported in

� = {x ∈ R
2 | |x| < D} (1)

where D is the radius of the activity region. The attenuated Radon transform of f is

p(φ, s) =
∫ +∞

−∞
dt f (sθ + tθ⊥) exp

(
−

∫ +∞

t

dl µ(sθ + lθ⊥)
)
. (2)
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Figure 1. Illustration of different parameters appearing in the definition of the attenuated Radon
transform.

See figure 1 for an illustration of the different variables appearing in this expression. By
definition, θ = (cosφ, sin φ) and θ⊥ = (− sin φ, cosφ). The function µ(x) describes the
way the photons are attenuated along the measurement lines defined by s and φ; it is referred
to as the attenuation map of the body under investigation and is considered to be known. For
a fixed φ, the set of values p(φ, s) obtained by varying s in R is called attenuated projection
of f .

Recently, exact formulae have been derived and implemented for the inversion of (2) with
p(φ, s) known for φ ∈ [0, 2π) and s ∈ R see [1–3]. In this paper, we are interested in the
reconstruction of f from projections which are acquired over a range of 180◦ instead of 360◦.
In the case of no attenuation, i.e. whenµ(x) = 0, it is well known that an angular range of 180◦

is sufficient to determine f in a unique and stable way. On the other hand, when µ(x) 
= 0,
it is generally believed that the data p(φ, s) must be known over 360◦. The contribution of
this paper is to show that this statement is wrong. More specifically, it is shown that exact and
stable reconstruction of f can be achieved using only measurements on a half-turn.

The practical implications of this work are important. By reducing the data acquisition
from 360◦ to 180◦, the data acquisition time can be halfed, thereby increasing patient throughput
and making the exam less uncomfortable for the patient. Another advantage is the possibility
to disregard projections which undergo high attenuation such as those traversing the spine in
thorax imaging. These projections are usually very noisy and tend to limit the image quality.

A simplification of the relation (2) between the data p and the image f occurs when
the activity is contained in a convex region where µ is constant. It will be assumed that this
condition holds. In this case, the data p(φ, s) can be modified into

g0(φ, s) =
∫

R

dt f (s θ + t θ⊥) eµ0 t (3)

where µ0 is the value of µ in the activity region (i.e. in the support of f ). Occasionally, we
will use the notation µ0 = µ0/2π . In the literature, g0 is referred to as the exponential Radon
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transform of f and g0(φ, ·) is called an exponential parallel-beam projection of f . The relation
between p and g0 can be written in the form

g0(φ, s) = p(φ, s)mµ(φ, s) (4)

where mµ(φ, s) is calculated from the attenuation map. See [4] for details.
Numerous papers have been written on the inversion of the exponential Radon transform

with constant attenuation. See [5–22] for the most representative works. All these references
suppose that g0(φ, s) is known for all angles φ ∈ [0, 2π). In this paper, it is assumed that
g0(φ, s) is only known for φ ∈ [0, π). To our knowledge, no mathematical results exist about
inversion from this limited data set. It has been observed in practice that iterative reconstruction
methods such as the expectation-maximization algorithm can provide accurate results from
180◦ data. However, no convergence theorems support these observations.

Conceptually, recovering f from g0(φ, s) with φ ∈ [0, π) is equivalent to reconstructing
f from

g(φ, s) =
∫

R

dt f (s θ + t θ⊥) eµ(φ) t (5)

with φ ∈ [0, 2π), s ∈ R and

µ(φ) =
{
µ0 if φ ∈ [0, π)

−µ0 if φ ∈ [π, 2π).
(6)

With this definition of µ(φ),

g(φ, s) =
{
g0(φ, s) if φ ∈ [0, π), s ∈ R

g0(φ − π,−s) if φ ∈ [π, 2π), s ∈ R.
(7)

Thus, g0(φ, s) is indeed only required for φ ∈ [0, π).
The transform g(φ, s) of equation (5) is referred to as the exponential Radon transform

with angle dependent attenuation factor. This transform has been investigated by Hazou and
Solmon [13], Kuchment and Schneiberg [23], and Palamodov [24]. Hazou and Solmon have
obtained some existence results. Kuchment and Schneiberg have derived an inversion formula
of the filtered-backprojection type. The proof assumed that µ(φ) is positive and continuously
differentiable. Palamodov has derived the formula of Kuchment and Schneiberg for µ(φ) of
arbitrary sign but such that µ(φ + π) = µ(φ). None of these results applies directly to the
inversion of (5) with µ(φ) given by equation (6).

This paper presents a formula for the reconstruction of f from g0(φ, s) with φ ∈ [0, π).
This formula is derived in two steps. First, a Fredholm integral equation of the second type
is derived for f . Section 2 presents the details of this derivation. Next, the integral equation
is solved. It is shown in section 3 that a stable solution can be obtained in the form of a
Neumann series. Section 4 discusses implementation details and presents simulation results.
Conclusions are given with a short discussion in section 5.

2. An integral equation for f

Let the symbol ∗ denote the convolution operation in R
2. In this section, it is shown that f is

the limit in L2 of the sequence fn = un + wn ∗ f where

un(x) =
∫ π

0
dφ e−µ0x·θ⊥

∫
µ0 � |σ | �

√
n2+µ2

0

dσ |σ | ei 2π σx·θ Fg0(φ, σ ) (8)
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and

wn(x, y) =
∫ 1

−1
dp eµ0py

∫
µ0 |p| � |σ | �

√
n2+µ2

0 p
2

dσ iµ0 sign(σ ) ei 2π xσ . (9)

Formally, we write

f = u∞ + w∞ ∗ f (10)

with

u∞(x) =
∫ π

0
dφ e−µ0x·θ⊥

∫
|σ | �µ0

dσ |σ | ei 2π σx·θ Fg0(φ, σ ) (11)

and

w∞(x, y) =
∫ 1

−1
dp eµ0py

∫
|σ | �µ0 |p|

dσ iµ0 sign(σ ) ei 2π xσ

= µ0

π x

{
sinhµ0(y + ix)

µ0(y + ix)
+

sinhµ0(y − ix)

µ0(y − ix)

}
. (12)

Note that u∞ is the result of applying the filtered-backprojection reconstruction formula of
Tretiak and Metz [6] to the available projections.

The derivation of (10) is based on the central slice theorem for g(φ, s) (equation (5)) with
µ(φ) given by equation (6):

Fg(φ, σ ) = Ff (σθ + iµ(φ) θ⊥). (13)

In this equation, Fg(φ, σ ) is the 1D Fourier transform of g(φ, s)w.r.t. s and Ff is the analytic
continuation of the Fourier transform of f . The proof of (13) can be found in [13]. As in [11],
we introduce two functions ω(φ, σ ) and α(φ, σ ) such that

σ = ω cosα, iµ(φ) = ω sin α. (14)

For |σ | > |µ(φ)|,
ω =

√
σ 2 − µ2(φ), tan α = iµ(φ)/σ. (15)

With the definition of θ and θ⊥, it is easy to see that

σθ + iµ(φ) θ⊥ = (ω cos(φ + α), ω sin(φ + α)). (16)

Thus,

Fg(φ, σ ) = Ff (ω cos(φ + α), ω sin(φ + α)). (17)

Now, f is expressed as the inverse of its Fourier transform in L2(R2), using polar
coordinates:

f (x, y) = lim
n→∞ fn(x, y) (18)

with

fn(x, y) =
∫ n

0
dω̂ ω̂

∫ 2π

0
dφ ei 2π ω̂(x cosφ+y sin φ) Ff (ω̂ cosφ, ω̂ sin φ). (19)

The limit holds in L2(R2). Let z = φ + iτ and C0 = {z ∈ C | φ ∈ [0, 2π), τ = 0}. The inner
integral in equation (19) is viewed as an integral along the curve C0 in the complex domain of
z. That is,∫ 2π

0
dφ ei 2π ω̂(x cosφ+y sin φ) Ff (ω̂ cosφ, ω̂ sin φ)

=
∫
C0

dz ei 2π ω̂(x cos z+y sin z) Ff (ω̂ cos z, ω̂ sin z). (20)
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Since f is bounded and compactly supported, Ff (ω̂ cos z, ω̂ sin z) is an entire analytic
function of z. Therefore, the integration theorem of Cauchy can be applied to obtain∫ 2π

0
dφ ei 2π ω̂(x cosφ+y sin φ) Ff (ω̂ cosφ, ω̂ sin φ)

=
5∑
l=1

∫
Cl

dz ei 2π ω̂(x cos z+y sin z) Ff (ω̂ cos z, ω̂ sin z) (21)

where the curves Cl form a bounded domain with C0. See figure 1 for an illustration of these
curves. In this figure, α̂(ω̂) is such that

tan α̂(ω̂) = iµ0√
ω̂2 + µ2(φ)

. (22)

The use of formula (21) in the expression of fn(x, y) yields

fn(x, y) = f (1)n (x, y) + f (2)n (x, y) (23)

wheref (1)n (x, y) is the contribution from the curvesC2 andC4, andf (2)n (x, y) is the contribution
from C1, C3 and C5.

The expression of f (1)n (x, y) is first developed. By definition of C2 and C4,

f (1)n (x, y) =
∫ n

0
dω̂ ω̂

∫ π

0
dφ ei 2π ω̂(x cos(φ+α̂)+y sin(φ+α̂))Ff (ω̂ cos(φ + α̂), ω̂ sin(φ + α̂))

+
∫ n

0
dω̂ ω̂

∫ 2π

π

dφ ei 2π ω̂(x cos(φ−α̂)+y sin(φ−α̂))F(ω̂ cos(φ − α̂), ω̂ sin(φ − α̂)).

(24)

Considering φ ∈ [0, 2π) as a fixed parameter, we apply the change of variable

ω̂ =
√
σ 2 − µ2(φ), σ � µ0. (25)

This change of variable is such that

σ dσ = ω̂ dω̂, ω̂ = ω(φ, σ ) and α̂(ω̂) =
{
α(φ, σ ) if φ ∈ [0, π)

−α(φ, σ ) if φ ∈ [π, 2π)

(26)

where α(φ, σ ) and ω(φ, σ ) are the functions introduced in (14) and (15). Using (25) with the
central slice theorem (equations (16) and (17)) leads to

f (1)n (x, y) =
∫ π

0
dφ

∫ √
n2+µ2

0

µ0

dσ σ ei 2π x·(σ θ+iµ(φ) θ⊥) Fg(φ, σ )

+
∫ 2π

π

dφ
∫ √

n2+µ2
0

µ0

dσ σ ei 2π x·(σ θ+iµ(φ) θ⊥) Fg(φ, σ ). (27)

That is,

f (1)n (x, y) =
∫ π

0
dφ e−µ0x·θ⊥

∫ √
n2+µ2

0

µ0

dσ σ ei 2π σx·θ Fg(φ, σ )

+
∫ 2π

π

dφ eµ0x·θ⊥
∫ √

n2+µ2
0

µ0

dσ σ ei 2π σx·θ Fg(φ, σ ). (28)
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Figure 2. Definition of contours Cl , l = 1, . . . , 5 forming a bounded domain with the curve C0 in
formula (20). These contours are used in formula (21) according to Cauchy’s integration theorem.
The function α̂(ω̂) is defined in equation (22).

Recall from equation (7) that g(φ, s) = g(φ − π,−s) for φ ∈ [π, 2π). This relation implies
Fg(φ, σ ) = Fg(φ − π,−σ) for φ ∈ [π, 2π). The change of variable φ′ = φ − π, σ ′ = −σ
followed by a substitution of φ′ into φ and s ′ into s in the second integral of (28) gives

f (1)n (x, y) =
∫ π

0
dφ e−µ0x·θ⊥

∫ √
n2+µ2

0

µ0

dσ σ ei 2π σx·θ Fg(φ, σ )

+
∫ π

0
dφ e−µ0x·θ⊥

∫ −µ0

−
√
n2+µ2

0

dσ (−σ) ei 2π σx·θ Fg(φ, σ ). (29)

Therefore,

f (1)n (x, y) =
∫ π

0
dφ e−µ0x·θ⊥

∫
µ0 � |σ | �

√
n2+µ2

0

dσ |σ | ei 2π σx·θ Fg(φ, σ ). (30)

Since g(φ, s) = g0(φ, s) for φ ∈ [0, π), we see that f (1)n is identical to the function un used
to define u∞ in equation (10).

Now, the expression of the term f (2)n (x, y) in (23) is developed. By definition of C1, C3

and C5 (see figure 2),

f (2)n (x, y) = i
∫ n

0
dω̂ ω̂

∫ −i α̂(ω̂)

0
dτ ei 2π ω̂(x cos iτ+y sin iτ)Ff (ω̂ cos iτ, ω̂ sin iτ)

−i
∫ n

0
dω̂ ω̂

∫ −i α̂(ω̂)

i α̂(ω̂)
dτ e−i 2π ω̂(x cos iτ+y sin iτ)Ff (−ω̂ cos iτ,−ω̂ sin iτ)

+i
∫ n

0
dω̂ ω̂

∫ 0

i α̂(ω̂)
dτ ei 2π ω̂(x cos iτ+y sin iτ)Ff (ω̂ cos iτ, ω̂ sin iτ). (31)

That is,

f (2)n (x, y) = i
∫ n

−n
dω̂ ω̂

∫ −i α̂(ω̂)

i α̂(ω̂)
dτ ei 2π ω̂(x cos iτ+y sin iτ)Ff (ω̂ cos iτ, ω̂ sin iτ) (32)

since α̂(−ω̂) = α̂(ω̂) (see equation (22)). Using the definition of the Fourier tranform of
f (x, y), this equation becomes

f (2)n (x, y) =
∫

R2
dx ′ dy ′ f (x ′, y ′) hn(x − x ′, y − y ′) (33)
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with

hn(x, y) = i
∫ n

−n
dω̂ ω̂

∫ −i α̂(ω̂)

i α̂(ω̂)
dτ ei 2π ω̂(x cos iτ+y sin iτ). (34)

The expression of hn can be simplified as follows. First, apply the change of variable

tan iτ = − iµ0 p sign(ω̂)√
ω̂2 + µ2

0 p
2
, cos iτ =

√
ω̂2 + µ2

0 p
2

|ω̂| , sin iτ = − iµ0 p

ω̂
, (35)

with ω̂ fixed. This yields

hn(x, y) =
∫ n

−n
dω̂ ω̂

∫ 1

−1
dp

iµ0√
ω̂2 + µ2

0 p
2

eµ0py ei 2π x sign(ω̂)
√
ω̂2+µ2

0 p
2
. (36)

Next, apply the change of variable

σ 2 = ω̂2 + µ2
0 p

2, sign(σ ) = sign(ω̂) (37)

with p fixed. The result is

hn(x, y) =
∫ 1

−1
dp eµ0py

∫
µ0 |p| � |σ | �

√
n2+µ2

0 p
2

dσ iµ0 sign(σ ) ei 2π xσ . (38)

We see that hn is equal to the function wn of equation (9). Therefore, f (2)n is identical to the
function wn ∗ f used to define w∞ ∗ f in equation (10).

In summary, we have shown that f is the limit in L2(R2) of the sequence

fn = f (1)n + f (2)n

= un + wn ∗ f (39)

with un and wn given by equations (8) and (9), respectively. To derive this result, it was
assumed that f is bounded and compactly supported in �.

3. A reconstruction formula

Let χ(x) be the characteristic function of the set �. Since f is compactly supported in �,
f = χ f . Thus, f can be seen as the limit inL2(�) of the sequence fn = χ un +χ (wn ∗χ f ).
In the appendix, we show that the sequence χ (wn ∗χ ψ) converges in L2(�) for any function
ψ ∈ L2(�). This result authorizes us to introduce a linear operator K : L2(�) → L2(�)

such that

Kψ = lim
n→∞χ (wn ∗ χ ψ), ψ ∈ L2(�), (40)

where the limit holds in L2(�). In particular, we have

f = χ u∞ +Kf. (41)

Hereafter, it is shown that the above integral equation admits a unique and stable solution in
L2(�). Moreover, this solution can be written in the form of a Neumann series. The idea of
introducing χ(x) was suggested by the work of Palamodov [24].

First, note that wn(x, y) is an odd function, i.e. wn(−x,−y) = −wn(x, y). This relation
is easily deduced from equation (9). Next, let Knψ = χ (wn ∗ χ ψ). Since wn is odd, the
scalar product

(Knψ1, ψ2) = −(ψ1,Knψ2) (42)
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for any functions ψ1 and ψ2 in L2(�). Therefore,

(Kψ1, ψ2) = −(ψ1,Kψ2) (43)

for any ψ1 and ψ2 in L2(�) because Knψ converges strongly to Kψ for ψ ∈ L2(�) (i.e.
‖Knψ − Kψ‖ → 0). Equation (43) shows that K is antisymmetric. Since this equation is
valid for any functions ψ1 and ψ2 in L2(�) and K is a linear operator, we deduce from the
theorem of Hellingter–Toeplitz4 thatK is bounded and (−K) is the adjoint operator ofK (see
chapter 10.1 in [25] for more details).

The discussion is now focused on solving equation (41) for f . Suppose first that ‖K‖ < 1.
(Such an assumption can be made since K is bounded.) In such a case, equation (41) can be
applied recursively to obtain

f = χ u∞ +Kf

= χ u∞ +K(χ u∞ +Kf )

= χ u∞ +K χ u∞ +K2 (χ u∞ +Kf )

=
∞∑
n=0

Knχ u∞. (44)

This series converges in L2(�) and is such that

‖f ‖ < ‖χ u∞‖
1 − ‖K‖ . (45)

When ‖K‖ < 1, we see thus that (41) admits a unique solution in L2(�). This solution
is stable because χ u∞ is continuous as a linear functional of g0. However, the condition
‖K‖ < 1 is not automatically satisfied. Formally, Kψ = χ (w∞ ∗ χ ψ) with w∞ given by
equation (12). Therefore, the condition ‖K‖ < 1 can only be satisfied for small values of
µ0D where D is the radius of �. To ensure the convergence of the series in (44) for a given
µ0, fixed by physical constraints, the activity f must thus be confined to a sufficiently small
region. The computer experiment carried out in section 4 shows that this condition is actually
too restrictive for practical applications.

To overcome the restriction ‖K‖ < 1, we introduce a relaxation factor γ ∈ (0, 1] in
equation (41) such that

f = γ χ u∞ + ((1 − γ ) I + γ K)f (46)

where I is the identity operator. This equation is rewritten in the form

f = γ χ u∞ + K̂f (47)

where K̂ = (1 − γ ) I + γ K . We show below that γ can be chosen so that ‖K̂‖ < 1 for any
value of µ0D. This property is a direct consequence of the antisymmetry ofK . By definition,

‖K̂ψ‖2 = (K̂ψ, K̂ψ)

= (
(1 − γ )ψ + γ Kψ, (1 − γ )ψ + γ Kψ

)
= (1 − γ )2 ‖ψ‖2 + γ 2 ‖Kψ‖2 + γ (1 − γ ) (ψ,Kψ) + γ (1 − γ ) (Kψ,ψ)

= (1 − γ )2 ‖ψ‖2 + γ 2 ‖Kψ‖2 (48)

for any ψ ∈ L2(�) since (Kψ,ψ) = −(ψ,Kψ). Hence,

‖K̂‖2 = (1 − γ )2 + γ 2 ‖K‖2. (49)

4 The theorem of Hellingter–Toeplitz can be stated as follows [25]: let K1 and K2 be two linear operators, each
defined on all of a complex Hilbert space H . If (K1ψ1, ψ2) = (ψ1,K2ψ2) for all ψ1, ψ2 ∈ H then K1 is bounded
and K2 is its Hilbert-adjoint operator.
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From this result, we see that the norm of K̂ admits a minimum at

γ = γopt = 1

1 + ‖K‖2
. (50)

Let K̂opt = (1 − γopt) I + γopt K be the value of K̂ at this minimum. We have

‖K̂opt‖ = ‖K‖(
1 + ‖K‖2

)1/2 . (51)

Therefore, by selecting γ = γopt in (46), the integral equation (41) is modified into

f = γopt χ u∞ + K̂optf (52)

with ‖K̂opt‖ < 1. Taking on the same recursive approach as in equation (44), we obtain

f = γopt

∞∑
n=0

(K̂opt)
nχ u∞, (53)

where the series converges in L2(�) for any value of µ0D.
Equation (53) defines a unique and stable solution to the integral equation (41). For this

solution, we have

‖f ‖ < γopt ‖χ u∞‖
1 − ‖K̂opt‖

. (54)

4. Implementation details and simulations

The reconstruction of f from formula (53) can be implemented in the following way:

• Step 1. Compute f0 = χ u∞ from the available projections g0. See formula (11).
• Step 2. Compute fn = K̂optfn−1 = (1 − γopt) fn−1 + γopt Kfn−1 for n = 1, . . . , N , with
γopt given by equation (50).

• Step 3. Compute fN � γopt
∑N

n=0 fn.

The function fN represents the reconstructed image. The accuracy ‖fN − f ‖ of the
reconstruction depends on ‖K‖. In the absence of noise, the smaller ‖K‖, the smaller ‖Kopt‖
(see formula (51)) and thus the smaller the number of terms N required for a given accuracy
because the series converges faster.

Step 1 above is a common step. From equation (11), we see indeed that u∞ is simply the
result of applying the filtered backprojection reconstruction formula of Tretiak and Metz [6]
to the available projections. To obtain u∞, it is needed to first filter the projections g0(φ, s) to
get

gF (φ, s) =
∫

|σ | �µ0

dσ |σ | ei 2π σ s Fg0(φ, σ ), φ ∈ [0, π). (55)

Once gF (φ, s) is known, the value of u∞ at a given point (x, y) is obtained by backprojection
according to the equation

u∞(x, y) =
∫ π

0
dφ e−µ0(−x sin φ+y cosφ) gF (φ, s = x cosφ + y sin φ). (56)

Since we are only interested in computing f0 = χ u∞, equation (56) only needs to be
implemented for pixels inside �. (Pixels outside � are not of interest since χ(x) = 0 if
x /∈ �.) The number of operations required to compute f0 on a grid of (2Q + 1)× (2Q + 1)
pixels from 2Q + 1 projections is O(Q3).
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Step 2 requires a method to compute the action ofK on a given imageψ and also a method
to compute ‖K‖ from which γopt is defined (equation (50)). First, we explain how to compute
Kψ = χ (w∞ ∗ χψ) for a given ψ . Consider that χψ is known on the grid of points

(xk, yl) = (kd, ld), k, l = −Q, . . . ,Q, (57)

covering � with d = D/Q. To compute Kψ , we use the discrete convolution formula

(w∞ ∗ χψ)(xk, yl) � d2
Q∑

k′=−Q

Q∑
l′=−Q

wb
(
(k − k′) d, (l − l′)d

)
(χψ)(xk′ , yl′),

k, l = −Q, . . . ,Q, (58)

wherewb is a regularized version ofw∞ defined below. After zeroing out the pixels which are
outside �, this formula provides an estimate of Kψ .

The regularization of w∞ in (58) is required because w∞ is singular along the line x = 0.
The definition of wb is based on a modified expression of formula (12) for w∞. Namely,

w∞(x, y) = sinhµ0y

πy
h(x)−

∫ 1

−1
dp eµ0py

∫
|σ | �µ0 |p|

dσ iµ0 sign(σ ) ei 2π xσ

= sinhµ0y

πy
h(x) +

µ0

π x

{
2 sinhµ0y

µ0y
− sinhµ0(y + ix)

µ0(y + ix)
− sinhµ0(y − ix)

µ0(y − ix)

}
(59)

where

h(x) =
∫

R

dσ i sign(σ ) ei2πxσ (60)

is the convolution kernel of the Hilbert transform. We replace h(x) in (59) by

hb(x) =
∫

|σ |<b
dσ i sign(σ ) ei2πxσ = cos(2πxb)− 1

πx
(61)

with b = 1/2d equal to the Nyquist frequency corresponding to the image sampling. This
modifies w∞ into the smooth function

wb(x, y) = sinhµ0y

πy
hb(x) +

µ0

π x

{
2 sinhµ0y

µ0y
− sinhµ0(y + ix)

µ0(y + ix)
− sinhµ0(y − ix)

µ0(y − ix)

}
.

(62)

By using a 2D fast Fourier transform algorithm for the computation of the discrete
convolution (58), the number of operations required for the application of K to a given image
is O(Q2 logQ).

Now, we explain how to estimate the norm of K . The idea is simply to use the power
method for the computation of the maximum eigenvalue of K∗K where K∗ = −K is the
adjoint operator of K . The square root of this eigenvalue is mathematically equal to ‖K‖.
Using the power method, ‖K‖ is found as the limit of the sequence βl generated through the
iterative steps

zl = Kψl−1, yl = −Kzl, βl = ‖zl‖, ψl = yl/‖yl‖, l = 1, 2, 3, . . . (63)

where ψ0 is an arbitrary non-zero image (see [26] for more details). In these steps, the
application of K to the images ψl−1 and zl is performed using equation (58). Note that a high
accuracy is not required on ‖K‖. Therefore, only a few iterations are needed.

Step 3 is trivial and can be performed in O(N Q2) operations, so that the total number of
operations required for the computation of fN is O(Q3) as long as N � Q. This number is
similar to the number of operations required for the reconstruction from data on 360◦.
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The reconstruction formula (53) was tested on simulated data of a simplified head phantom
consisting of three ellipses. Table 1 gives a description of that phantom. The attenuation factor
used to generate the data wasµ0 = 0.012 mm−1. This value corresponds to tissue attenuation.
Three reconstructions were performed on a grid of 128 × 128 pixels of side 2 mm. In each
case, there were 128 rays per projection with a sampling distance /s = 2 mm.

Table 1. Definition of the ellipses forming the simplified head phantom.

Ellipse Centre (mm) Major axis (mm) Minor axis (mm) Activity

I (0, 0) 105 90 680
II (0, 40) 45 25 480
III (−35,−45) 27.5 27.5 230

The first reconstruction is shown in the first row of figure 3. This result was obtained from
256 projections sampled on 360◦ using the filtered backprojection algorithm of Tretiak and
Metz [6]. The reconstruction is very accurate since the data were finely sampled over 360◦

and the method relies on an exact formula linking f (x) to g0(φ, s) with φ ∈ [0, 2π).
The second reconstruction, shown in the second row of figure 3, is the image χu∞.

This reconstruction was obtained from 256 projections sampled on 180◦. The result is very
inaccurate and shows that the projections are really required to be known over 360◦ to obtain
good results with the filtered backprojection method of Tretiak and Metz.

The third row of figure 3 shows the sum of the first 15 terms in the series (53). It
was computed that ‖K‖ = 1.1055. So, convergence of the series was not ensured without
relaxation. The modified operator K̂opt had a norm ‖K̂opt‖ = 0.74. In this case, the
reconstruction using 15 terms was found to be as accurate as the Tretiak and Metz result
of the first row, while using only data on 180◦.

5. Conclusion

In this paper, we have shown that stable and exact reconstruction in 2D SPECT imaging does
not require the data to be known over 360◦ as has been previously assumed. A range of 180◦ was
shown to be sufficient when the activity is contained in a convex region where the attenuation
is constant. A reconstruction algorithm using only data on a half-turn was also given. This
algorithm is as efficient as the FBP algorithm of Tretiak and Metz [6] but may not be optimally
designed to handle data noise. Further work is required to compare the performance of the
method with alternative techniques using data on 360◦.

Appendix

In this section, we show that the sequence Knψ = χ (wn ∗ χ ψ) converges in L2(�) for any
function ψ ∈ L2(�), where wn is defined by equation (9). To prove this result, we writeKnψ

in the form

Knψ = K(1)
n ψ −K(2)

n ψ −K(3)
n ψ (64)

with

K(l)
n ψ = χ (w(l)n ∗ χ ψ), l = 1, 2, 3, (65)

where

w(1)n (x, y) =
∫ 1

−1
dp eµ0py

∫
|σ | �

√
n2+µ2

0

dσ iµ0 sign(σ ) ei 2π xσ , (66)
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Figure 3. First row: FBP reconstruction from data on 360◦. Second row: FBP reconstruction
from data on 180◦ (this image is χ u∞). Last row: reconstruction using 15 terms of the Neumann
series (53). The profiles correspond to the slice y = 60 mm. The attenuation factor was
µ0 = 0.012 mm−1.
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w(2)n (x, y) =
∫ 1

−1
dp eµ0py

∫
√
n2+µ2

0 p
2 � |σ | �

√
n2+µ2

0

dσ iµ0 sign(σ ) ei 2π xσ , (67)

and

w(3)n (x, y) =
∫ 1

−1
dp eµ0py

∫
|σ | �µ0 |p|

dσ iµ0 sign(σ ) ei 2π xσ . (68)

Then, we show that each sequence K(l)
n ψ converges individually in L2(�).

The sequence K(1)
n ψ is first considered. Note that w(1)n (x, y) = ρ(y) hn(x) with

ρ(y) = sinhµ0y

πy
(69)

and

hn(x) =
∫

R

dσ i sign(σ ) χn(σ ) ei2πσx, (70)

where

χn(σ ) =
{

1 if σ 2 < n2 + µ2
0

0 otherwise.
(71)

Let

ρ̃(y) =
{
ρ(y) if |y| < 2D

0 otherwise.
(72)

By definition,

(K(1)
n ψ)(x, y) = χ(x, y)

∫ ∞

−∞
dy ′ ρ(y − y ′)

∫ ∞

−∞
dx ′ hn(x − x ′) ψ(x ′, y ′) χ(x ′, y ′)

= χ(x, y)

∫ ∞

−∞
dy ′ ρ̃(y − y ′)

∫ ∞

−∞
dx ′ hn(x − x ′) ψ(x ′, y ′) χ(x ′, y ′). (73)

Since ρ̃ hn and χ ψ are both in L2(R2), the relation of Parseval can be applied to obtain

(K(1)
n ψ)(x, y) = χ(x, y)

∫ ∞

−∞
dX

∫ ∞

−∞
dY (F ρ̃)(Y )

× i sign(X) χn(X) (F(χ ψ))(X, Y ) ei2π(xX+yY )

= χ(x, y)

∫ ∞

−∞
dX

∫ ∞

−∞
dY ηn(X, Y ) ei2π(xX+yY ) (74)

with ηn(X, Y ) = i sign(X) χn(X) (F ρ̃)(Y ) (F(χ ψ))(X, Y ). Now, observe that ηn(X, Y ) ∈
L1(R2) as is any product of two functions in L2(R2) and observe also that ηn(X, Y ) ∈ L2(R2)

because F(χ ψ) ∈ L2(R2) and F ρ̃ is bounded since ρ̃ ∈ L1(R). Therefore, Fηn ∈ L2(R2)

and K(1)
n ψ ∈ L2(�) with

‖K(1)
p ψ −K(1)

q ψ‖2 � ‖Fηp − Fηq‖2 � ‖ηp − ηq‖2 (75)

which tends to zero when p and q tend to ∞. Thus, K(1)
n ψ converges in L2(�).

Now, the sequence K(2)
n ψ is considered. It is easy to see that w(2)n (x, y) is a continuous

function and that

|w(2)n (x, y)| � 2µ3
0 eµ0|y| 1

n +
√
n2 + µ2

0

. (76)
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Therefore,

|(K(2)
n ψ)(x, y)| � χ(x, y) 2µ3

0 e2µ0D
1

n +
√
n2 + µ2

0

∫ ∞

−∞

∫ ∞

−∞
dx ′ dy ′ |(χ ψ)(x ′, y ′)|. (77)

Thus, K(2)
n ψ converges to zero in L2(�).

Finally, consider the sequenceK(3)
n ψ . This sequence is constant, so it is sufficient to show

that K(3)
n ψ ∈ L2(�). By definition, w(3)n (x, y) is a continuous function. Therefore,

|(K(3)
n ψ)(x, y)| � χ(x, y)

(
sup

x∈�, x ′∈�
|w(3)n (x − x ′)|

) ∫ ∞

−∞

∫ ∞

−∞
dx ′ dy ′ |(χ ψ)(x ′, y ′)|. (78)

Thus, K(3)
n ψ ∈ L2(�) since it is bounded and supported in �.
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