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3D Image Reconstruction from Exponential X-ray 
Projections: a Completeness Condition and an 

Inversion Formula 
F&d&ic Noo, Rolf Clackdoyle, Jean-Marc Wagner 

Abstract-This work concerns the problem of reconstruct- 
ing a 3D image from exponential X-ray (parallel-beam) 
projections. It is shown that exact reconstruction can 
be achieved when the projections are known on a set of 
directions R which satisfies the Orlov condition for non- 
attenuated projections. More specifically, it is shown that 
exact reconstruction can be achieved when the set R is inter- 
sected by every great circle on the unit sphere, provided the 
product p R is sufficiently small, where R is the radius of the 
region where the image is non-zero and p is the attenuation 
coefficient. A reconstruction method is suggested and sim- 
ulation results are provided to demonstrate the exactness 
and usefulness of the method. 

Keywords- SPECT, attenuation correction, exponential 
parallel-beam projections, Orlov’s condition 

I. INTRODUCTION 

This work concerns the mathematical problem of recon- 
structing a 3D image f(g) from exponential X-ray (parallel- 
beam) projections. This problem is stated as follows: 

Let @ be some unit vector and let 

PO?, ‘zL7 v) = 
s 

O” dtf(ua+v/J+t@) exp(@) 
-co 

(u,v) E lR2 (1) 

be the exponential X-ray projection of f(g) in the direction 
@. Givenp(i?,.,.) f or a II vectors @ in a subset R of the unit 
sphere, determine f. 

Note that the vectors a and /?I in (1) are unit orthogonal 
vectors perpendicular to @, while u and v are Cartesian 
coordinates used to specify different lines in the direction 
@. The constant p is the attenuation coefficient. 

In the case where p = 0, p@u,v) is a non-attenuated 
parallel-beam projection of f. The reconstruction theory 
for this situation has been widely covered in the literature. 
Of particular interest is the work of Orlov [l] who showed 
that exact reconstruction of f(g) is possible when R is in- 
tersected by every great circle on the unit sphere. 

When p # 0, reconstruction of f from p@u,v) is more 
difficult and only particular geometries have been inves- 
tigated [a]-[9]. F rom these works, it is known that exact 
reconstruction can be achieved when R is anyone of the 
following sets: a great circle [2,3], the full sphere [4,5], a 
union of great circles [6], a semi great circle [7], a semi 
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equatorial band [8] and a union of small circles satisfying 
Orlov’s condition (RSH-SPECT geometry) [9]. 

In this work, we show that Orlov’s condition is actually 
valid for reconstruction of f (:) from p(@, u, v) when p # 0. 
More specifically, we show that exact reconstruction off(g) 
is possible when R is intersected by every great circle on the 
unit sphere provided the product p R is sufficiently small, 
where R is the radius of the region where f (:) is non-zero. 

Care must be taken with the definition of R in the case 
where p # 0. In the non-attenuated case where p = 0, 

P(8, u7 v) = P(-8, u,v) and it is customary to assume that 
R is symmetric (i.e. if @ E R, then -@ E 0). When p # 0, 
the reconstruction problem is different for symmetric and 
non-symmetric sets R because ~(8, u, v) # p( -@, u, v). The 
results in this paper apply to both types of sets. 

This work finds its main application in SPECT imag- 
ing. Indeed, assuming that the attenuation is constant in 
the activity region, it is known that ideal SPECT data are 
related to exponential X-ray projections by a set of multi- 
plicative weights defined from the attenuation map [lo]. 

II. METHOD 

Suppose that p = 0. In this case, it is known that there 
exists a filter h@,u,v) such that 

f(~)=SdB(h*P~=n)(8,u=~.a,v=~.~), (2) 
n 

where the symbol * denotes a convolution operation. 

Our inversion formula is based on the existence of the 
above filter h@,u,v) and the relation 

f(z) = fok) + (W * fk) 

where 

fo(:)=Sn(ItlexP(-P~.H)(h*P)(~,~.nrL.jl), 

and 

WC:) = j)?(l- exp(-~:.8))h(8,:.~,:.P). 

Let R be such that f(g) = 0 for ]:I > R and let 

x(z) = 
1 if I:] < R 
0 otherwise 

(3) 

(4) 

(5) 

(6) 
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In practice R is always finite since f is physically restricted 
to a finite region. Using x, the integral equation (3) can 
be rewritten in the form 

f=xfo+x(~*f)=xfo+~f (7) 

where K is an operator such that K f = x(W * f). Because 
IV(:) tends to zero when p tends to zero and x(g) restricts 
the action of W to the region 1~1 < R, l[Kll < 1 for pR 
sufficiently small and equation (7) admits then the unique 
solution 00 

I=1 

III. SIMULATION 

We have implemented formula (8) for three different tra- 
jectories: a great circle, a semi-great circle, and the RSH- 
SPECT geometry with a slant angle of 30’ and three de- 
tector positions separated by 60’. Figure 1 shows the 
results obtained from computer-simulated projections of 
a heart phantom made up of ellipsoids, with 20% activ- 
ity in the ventricules. The attenuation coefficient was 
p = O.O152/mm and the radius of the field-of-view was 
R = 74 mm. For each geometry, there were 150 projections 
(each of 128 x 128 q s uare pixels of side 1.2 mm) and the 
reconstruction was performed on a grid of 1283 cubic vox- 
els of side 1.2 mm. The quality of the results demonstrates 
the validity of the method for practical data parameters. 

PI 

PI 

[31 

[41 

[51 

PI 

[71 

PI 

PI 

REFERENCES 

s. s. Orlov, “Theory of three dimensional reconstruction. 1. 
Conditions of a complete set of projections.“, Sou. Phys.- 
Crystallogr., 20, 312-314, 1975. 
0. Tretiak and C. Metz, “The exponential Radon transform”, 
SIAM J. Appl. Math., 39(2), 341-354, 1980. 
C. E. Metz and X. Pan, “A unified analysis of exact methods of 
inverting the 2D exponential Radon transform, with implications 
for Noise Control in SPECT”, IEEE Zkans. Med. Zmag., 14(4), 
643-658, 1995. 
I. A. Hazou, “Inversion of the exponential X-ray transform. I: 
Analysis”, Math. Methods in the Applied Sciences, Vol. lO(lO), 
561-574, 1988. 
Y. Weng, G. L. Zeng and G. T. Gullberg, “Filtered backprojec- 
tion algorithms for attenuated parallel and cone-beam projec- 
tions sampled on a sphere”, in Three-dimensional Image Recon- 
struction in Radiation and Nuclear Medicine, ed. P.Grangeat 
and J.-L. Amans (Dordrecht: Kluwer), 19-34, 1996. 
J.-M. Wagner and F. Noo, “Three-dimensional image reconstruc- 
tion from exponential parallel-beam projections”, IEEE nuns- 
actions on Nuclear Sciences, (to appear) June 2001. 
F. Noo and J.-M. Wagner, “Image reconstruction in 2D SPECT 
with 180-degree acquisition,” submitted to Inverse Probkms. 
F. Noo, R. Clackdoyle, J.-M. Wagner, “Inversion of the 3D expo- 
nential X-ray transform for a semi equatorial band.“, submitted 
to the Fully 3D meeting conference. 
J.-M. Wagner, F. Noo, R. Clackdoyle, “Exact inversion of the 
exponential X-ray transform for RSH-SPECT.“, submitted to 

RSH-SPECT geometry 

Fig. 1. Left column: reconstruction from non-attenuated data using 
(2). Middle column: reconstruction fa(g) (equation (4)). Right 
column: implementation of formula (8) with 4 terms. The images 
are displayed using the gray-scale [O.S, 1.21 window centered on 
the heart-wall activity value of 1. The average relative error 
for the reconstructions in the right column is approximately 3%. 
Reconstruction time: about 5 min cpu per iteration on a SUN 
ULTRA 10. 

the Fully 3D meeting conference. 
[lo] A. Markoe, “Fourier inversion of the attenuated X-ray trans- 

form”, SIAM J. Math. Anal., 15(4), 718-722, 1984. 

0-7803-7324-3/02/$17.00 (C) 2002 IEEE


	NSS MIC 2001
	Return to Main Menu


