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Abstract

This work presents new mathematical results on the inversion of the exponential X-ray
transform. It is shown that a reconstruction formula can be obtained for any data set
whose projection directions consist of a union of half great circles on the unit sphere. A
basic example of such a data set is the semi equatorial band; the discussion in the paper is
mostly focussed on this example. The reconstruction formula takes the form of a Neumann
(geometric) series and is both exact and stable.

The exponential X-ray transform has been mainly studied in SPECT imaging. In this con-
text, our results demonstrate mathematically that fully 3-D image reconstruction in SPECT
with non-zero attenuation does not always require symmetric data sets (opposing views).
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1 Introduction

The inversion of the exponential X-ray transform is a generalization to three dimensions of the
inversion of the exponential Radon transform in two dimensions. The problem is to reconstruct
a three-dimensional (3-D) image f from exponentially-weighted parallel-beam projections
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where 8 is the direction of projection, u is a constant, and vector s is orthogonal to 8 and is used
to specify different lines of integration in the direction 8. Exponential parallel-beam projections
can be used to model the data in SPECT imaging when the activity is contained in a convex
region of constant attenuation p (see Markoe, 1984). In that case, the vector 8 is defined by the
orientation of the camera and the collimator holes, and s is used to specify detector locations
for the p(8,.) projection.

The set of directions 8 for which p is measured defines the data acquisition geometry. This
set, denoted (), is a subset of the unit sphere. The most common set {2 encountered in SPECT
imaging is the great circle (360° scan) or half great circle (180° scan) of directions orthogonal to
the patient bed. However, fully 3-D geometries are also possible, such as the rotating slant-hole
SPECT geometry (Clack et al., 1996).

Image reconstruction from exponential X-ray projections on a great circle has been widely
studied over the last twenty years and is now well-understood, particularly due to the significant
works of Tretiak and Metz (1980), Metz and Pan (1995) and Pan and Metz (1995). In fully 3-D
geometries, the situation is very different. To our knowledge, only four works concerning exact
fully 3-D reconstruction from exponential X-ray projections have been published. One of these
(Palamodov, 1995) applies to any symmetrical data set! provided the diameter of the region
where f is non-zero is below some bound depending on p. The other three (Hazou 1988, Weng
et al. 1996, and Wagner and Noo 2001) impose no restriction on the object diameter but only
apply to specific symmetrical geometries, the most general of which is a union of great circles.

Currently, the class of data sets for which an inversion formula of the imaging equation (1)
exists is unknown. It is not even known what conditions a data set must satisfy to be complete.
The 3-D reconstruction theory for X-ray projections (u = 0) (Orlov 1975, Defrise et al. 1989) is
not easily modified to handle exponential X-ray projections.

In this paper, we show that an exact inversion of the exponential X-ray transform is possible
for a large class of fully 3-D non-symmetrical geometries, called semi-circular geometries. A
semi-circular geometry is defined as any set {2 that is a union of half great circles on the unit
sphere. A basic example of such a geometry is the half equatorial band Qy,;, illustrated in figure
la; most of the discussion in the paper concentrates on this example. Another example is a
circular scan of 270 degrees (a three-quarters great circle).

In principle, the half equatorial band and the three-quarters great circle geometries could
be implemented on existing SPECT scanners. However, the practicabilities of such geometries

1A data set Q is symmetrical when 6 € 2 implies —8 € Q.



is not the subject of this paper. These geometries are provided as examples to enhance the
readibility of the manuscript and to indicate that the theoretical developments of this paper are
not irrelevant to SPECT imaging techniques. The theoretical advances presented in this paper
provide another step towards a complete understanding of the exponential and attenuated X-ray
transform, which is of key importance for the development of future imaging systems.

The basic idea for reconstruction with semi-circular geometries is to combine a recent result
on reconstruction from 180° scans (Noo and Wagner 2001) with the true three-dimensional
reconstruction (TTR) method of Ra et al. (1982). As discussed at the beginning of section 2,
the semi equatorial band 2., can be seen as a union of half great circles. In Noo and Wagner
(2001), it was shown in a 2-D context that an integral equation for f can be obtained from data
on a half great circle. Using this result, an integral equation for f is written in section 2 for
any half great circle in Q. Next, in section 3, all integral equations are combined together to
obtain a single integral equation for f, which involves all data from ;. This combination step
is similar to the TTR method of Ra et al. (1982). In section 4, the integral equation of section 3
is shown to admit a unique and stable solution in form of a Neumann series. A reconstruction
algorithm is given at the end of that section. Results obtained from computer-simulated data
are presented in section 5. Finally, section 6 provides a discussion to give more insight into
sections 2 to 4 and to suggest how the method can be applied to other geometries such as a
circular scan of 270 degrees (a three-quarters great circle).

2 A half great circle in the semi equatorial band

Consider a full equatorial band on the unit sphere and select the points of this band that
lie on the same side of a plane passing through the z-axis. The union of these points is a
half equatorial band. Figure la gives an illustration of a half equatorial band of aperture
26y; for this example, the restricting plane is the (y,z)-plane and the selected points are
on the negative-z side. The mathematical definition of this half equatorial band is Qe =
{Q = (ezaeyaez) : ||Q|| =1, |Oz| < cos by, 0, < 0}

It can be shown that Q. is a union of half great circles. First note that a half great circle
is the part of a great circle that lies one side of a plane passing through the center of the unit
sphere. Next, consider the full equatorial band . used to define Q. From Ra et al. (1982),
it is known that each point in ., lies on at least one great circle that is fully contained in
Q¢ep. Therefore, each point in €2, is on at least one great circle that is fully contained in Q.
The part of this great circle lying on the negative-z side of the (y, z)-plane is a half great circle,
which furthermore is completely contained in Q5. Hence, each point in Q. is on a half great
circle that is fully contained in Qpep, i.e Qpep is a union of half great circles.

In this section, a single half great circle in Qe is considered (see figures la and 1b). The
notation Z(n) is used to describe one of these half great circles, with n defined as the unique
unit vector with positive z-component and orthogonal to Z. Let E be the endpoint of Z(n) with
positive y-component, necessarily lying in the & = 0 plane. Let b = OF where O is the center
of the sphere and let a =n x b.



Now, consider equation (1) for € in a half-circle Z(n). From the results in Noo and Wagner
(2001), it is known that f satisfies the following integral equation

f(z) = fo(z,n) +w(z,n) * f(z) (2)

where the symbol % denotes a 3D convolution and where fy(z,n) and w(z,n) are defined as
follows. The function fo(z,n) is the result of (incorrectly) applying the filtered backprojection
(FBP) algorithm of Tretiak and Metz (1980) to the projections from the half great circle Z(n):

folem) = [ 8ol (6,2~ (@ 0)0) expl-pz-0) (3)

with
pf@s) = [, dspbs-)0 k(s (nx0) )

where ¢ is the 1D dirac function and k, is the notch filter

ku(r)=1/2 dv |v| exp(j27ry). (5)
lv|>p/2r

The convolution kernel is given by w(z,n) = é(z - n) w(z - a,z - b) where

(u,v) = _sm:vuv o(w) + %{ 2s121;1 po
sinh p(v +iu)  sinhp(v —iu) } (6)
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with
q(u) = — /]R do isign(o) exp(i2muo) . (7)

By definition, ¢(u) is the convolution kernel of the Hilbert transform. Note that w(z,n) is an
odd function in z, i.e w(—z,n) = —w(z,n).

Basically, for exponential projections p(8, s) measured on the (360°) great circle C(n) of unit
vectors orthogonal to n, the Tretiak and Metz FBP gives an accurate reconstruction f. However,
on the (180°) half circle Z(n), the reconstruction gives an incorrect fo. The images fo and f are
related according to equation (2), which involves w.

3 The semi equatorial band

The discussion is now directed at the half equatorial band of figure 1a. Let A be the set of unit
vectors corresponding to all the half great circles in Qpep. See figure 1b.

By averaging together the integral equations (2) available for each half-circle Z(n) in Qpep,
an integral equation involving all the data from 2. is obtained for f:

f@) = fra(z)+W(z)*f(z) (8)



with
fhev(z) = ¢ /A dn fo(z,n) (9)

and

W(z)=c /A dpw(z,n), (10)

where c is a normalization constant;

c— 1//Ad@ — 1/(2r (1 — cos 6y)) (11)

if 6y is the half aperture of the band.

Following the same argument as in Wagner and Noo (2001), it is now shown that frep(z) can
be calculated in a fully 3-D FBP way. As a first step, equation (3) for fy(z,n) is rewritten in
the form

fo(%ﬂ)=/ﬂ d8 §(0- n) pg (6,2 — (z-6)8) exp(—pz-6). (12)

Next, this expression for fo with pf’ given by (4) is inserted in (9) and the integration over n € A
is moved inside the convolution integral for pg . The result is the FBP formula

Fren() = /Q d0 p (0,2 — (z-0)6) exp(—uz - 6) (13)

where p%’ (8, s) is obtained from p(8,s) using the convolution equation

7 (8,5) = /s ds'p(8,s —s') hu(8,s") (14)

with
hu6,s) = [ dnd(6-n)s(s-n) k(s (nx 9)). (15)

It is observed that h, is identical to the filter obtained in Wagner and Noo (2001) for FBP
reconstruction from exponential X-ray projections on a full equatorial band.

As readily seen from its definition, the filter h, is a generalized function with singularities at
s = 0. The implementation of equation (14) therefore requires the use of some regularization
technique. For an accurate computation of p¥' (8, s) from samples of p(8,s) on a Cartesian grid,
(14) should be implemented in the Fourier domain with some apodizing frequency window,
such as the Hanning window. Such an implementation requires the knowledge of the Fourier
transform of the filter h,. It is shown in Wagner and Noo (2001) that this transform is

H,(0,v) = i ds h,(8,s) exp(—j27s - v)

dnlyv-(nx8), v-8=0 (16)
Cu(0)NA
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where C,, () is a subset of the great circle C(8) of unit vectors orthogonal to 6:
Cu(@) =C@)\{necC(8) : |v-(nx8)| <p/2n}. (17)

Note, in particular, that C,(8) is empty when ||v|| < p/27 because |v - (n x 8)| < p/27 for any
n in this case. Therefore, H,(6,v) = 0 if ||v|| < p/27. Table 1 in Wagner and Noo (2001) can
be directly used to get the values of integral (16) for 8 € Q¢ and s such that s-8 = 0.

4 Solution of the integral equation

In this section, it is shown that the integral equation (8) admits a unique solution which can be
expressed in the form of a Neumann series.

The main problem encountered in the solution of (8) is the exponential growth of the filter
W (z) with increasing z. This growth is evident in equation (6) used for the definition of
w(z,n) which appears in the definition of W (z) (equation (10)). Because of this behavior at
large z values, w(z) does not admit a Fourier transform and (8) cannot be solved by simple

deconvolution.
Let D be the sphere of radius R such that f(z) =0 for z ¢ D and let

(18)

M@={1 ifzeD

0 otherwise

In practice R is always finite since f is physically restricted to a finite region. Since x f = f,
equation (8) can be rewritten in the form

f=XIhev + K [ (19)

where the operator K is defined by K f = x(W x f). Equation (19) can be solved using results
from functional analysis. Let I be the identity operator. From (19), it is clear that

(I —K) [ =XTIheb- (20)

Hence, using the geometric series (I — K)™1 =3%_ K™

F=> K™Xfnev- (21)

m=0

The convergence of the geometric series and the existence of (I — K)~! are ensured if || K|| < 1
where ||K|| denotes the norm of K. To define ||K]||, the domain of application of equation (19)
must be first defined. From the results in Noo and Wagner (2001), it can be shown that K
maps L%(D) onto L?*(D) where L?(D) is the space of square integrable functions in D. So, (19)
is valid in L?(D) with

P = sup LD 22
fezm (£, 1)
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where the expression (.,.) denotes the inner product between functions in L?(D). In addition,
it is noted that K is skew-symmetric. That is

(Kf,9) =—(f,Kg) for any f, g € L*(D). (23)

This property is a consequence of the oddness of W (z): W (—z) = —W (z) because w(—z,n) =
—w(z,n) (see equations (6) and (10)). Since (23) holds for any f,g € L?(D) and K is a linear
operator, ||K|| is finite (see the theorem of Hellingter-Toeplitz in Kreyszig 1989).

Conceptually, the presence of x in the definition of K limits the size of ||K||. However, the
condition || K|| < 11is very restrictive and simulations indicate that it is only met for small values
of R. To overcome this difficulty, the skew-symmetry of K is invoked. Using the same approach
as in Noo and Wagner (2001), a modified operator K= (1—v) I+ K is introduced using some
parameter v € (0,1). Equation (19) is equivalent to

f=vxfra+Kf. (24)

Next, it is observed from (22) and (23) that ||K|2 = (1 — v)2 ++2||K||2. The minimum of this
expression is at ¥ = yopt = 1/(1 + || K||?). For this value of 7, K = K, with

: K]
Kopt|l| = ————+, 25
|| Pt|| (1—|—||K||2)1/2 ( )
which is always smaller than one. Therefore, (24) admits a unique solution
F="opt Y KipyXFnet (26)

m=0

because the geometric series (I — Kop) ™t = Yooy K2ty always converges.

The reconstruction of f from formula (26) can be implemented in the following way:

e Step 1: Compute X frep from the data p on Qpep using (13).

e Step 2: Compute f,, = Kopt X frn—1 forn=1,...,N.

e Step 3: Compute fx = Yopt X fhet + ¥ quyzl fn-

The function fy represents the reconstructed image. The accuracy ||fy— f|| of the reconstruction
depends on ||K||. In the absence of noise, the smaller || K|, the smaller || K|| and thus the smaller
the number of terms N required for a given accuracy because the series converges faster.

5 A numerical example

A reconstruction was performed from computer-simulated projection data. The original object
was a highly idealized heart model made up of three ellipsoids of constant intensity. The two
small ellipsoids, representing the ventricles, had a relative intensity 20% of that in the myocardial



region. The top row of figure 2 shows a coronal and a transverse slice through the heart
phantom. Simulated exponential parallel-beam projections were calculated analytically for 120 x
30 projections on a semi equatorial band of aperture +25°. Each projection was made up of
128 x 128 square pixels of side 1.2 mm. The attenuation coefficient was p = 0.152/cm.

The initial image fje, was obtained by 3D FBP using the filter given by equation (16). The
second row of figure 2 illustrates two slices through fpes, showing poor recovery of the intensity
values although the overall features were recovered well. The operator K used for step 2 was
obtained as follows. Using the analytic form of w(z,n), a numerical integration was performed
to obtain W (z) according to (10). The norm of the operator K was then computed numerically
from which v,,; was obtained. The operation of K was performed from the stored convolution
kernel W (z) and using 7op:. Ten terms were used in the series and the bottom row of figure 2
shows the succesfull recovery of f. FKach term took about 5 minutes of CPU time on a SUN

ULTRA SPARC 10 (450 MHz, 700Mb RAM).

6 Discussion and conclusions

The development of the inversion formula for the semi-equatorial band is based on two funda-
mental results. The first one is a result of Noo and Wagner (2001) for half great circles of data:
data on a half great circle can be used to obtain an integral equation for f with a convolution
kernel which is odd. Because the kernel is odd, the integral equation admits a unique solution
in the form of the Neumann (geometric) series. The second result is that the sum of integral
equations obtained for individual half-circles generates an integral equation of the same form,
with an odd convolution kernel. Therefore, for any data set consisting of a union of half great
circles, an integral equation for f can be formed which is solvable as a geometric series.

For a data set €2 defined as a union of half great circles Z(n) with n ranging over a set A,
the reconstruction steps are the following. First, the initial term of the series (corresponding
to fhrep) must be calculated. Conceptually, the data on each semi great circle can be processed
using the FBP method of Tretiak and Metz (1980) to obtain individual reconstructions summed
to give the required initial term. This approach can be difficult to implement in practice due to
finite sampling considerations. A better approach is to apply a 3-D FBP formula similar to (13)
to the data on Q with a filter h, defined as in equation (15). The FBP filter can be computed
numerically if necessary. The second step concerns the convolution kernel W. This kernel is
computed from the definition of A using equation (10) and will usually be stored digitally. Once
W and the initial term are known, f can be computed following the steps described at the end
of section 4. These steps require the evaluation of the norm of K to define Kopt. This norm can
be evaluated analytically using the power method. The application of K to each intermediate
term f is straightforward. The main step is the convolution with W, evaluated at all voxels in
some predefined set D outside which f is known to be zero.

At this point, it should be observed that the integral equation for f does not need to be
built using all half great circles in (2, as achieved in section 3. If there exists two sets of half
great circles whose union gives 2, then an integral equation for f can be built using any of these



two sets and two different inversion formulas for f can be obtained. These two procedures will
behave differently in the presence of data noise because the convolution kernel W of the integral
equation will be different and a different initial term of the Neuman series will be obtained. In
short, any description of  as a union of half great circles can be used to obtain an inversion
formula for f but the particular description will influence the image accuracy in presence of data
noise. At this stage, we have no rule on how to pick an optimal description.

To illustrate the above discussion, suppose that the data set consists of a circular scan of 270
degrees (a three-quarters great cirsle): Q = {8 = (cos ¢,sin @), ¢ € [0,37/2]}. There are several
ways to decompose this data set as a union of half great circles. A simple way is to view it as the
union of two half great circles, defined with ¢ € [0, 7] and ¢ € [7/2,37/2] respectively. Another
way is to use the union of the semi great circles Z(n) = {8 = (cos ¢,sin ), ¢ € [n,n+ 7|} gen-
erated by varying n continuously between 0 and 7/2. Depending on the selected decomposition,
a different integral equation will result for f, with a different convolution kernel and a different
initial term. The associated geometric series for f may converge at different rates and also the
FBP formulas for the initial terms may respond differently to data noise. Whatever decompo-
sition is chosen, however, the method will always give more weight to the data in the central
interval ¢ € [w/2,n] which suggests that other reconstruction formulas may exist to produce
more uniform noise treatment.

The results presented here greatly expand the body of knowledge on the inversion of the
exponential X-ray transform. In particular, this work presents the first fully 3-D results for
a large class of non-symmetric geometries. (A parallel submission to this conference issue by
Wagner et al. addresses certain geometries consisting of a union of circles on the unit sphere.
This is a distinct class of geometries, but also includes non-symmetric cases.)

The exponential X-ray transform has been mainly studied in SPECT imaging but is also useful
in the determination of optimal beam configurations in Intensity Modulated Radiation Therapy
(Braunstein 2000). In the context of SPECT imaging, our results demonstrate mathematically
that fully 3-D image reconstruction in SPECT with non-zero attenuation does not always require
symmetric data sets (opposing views). When the emission takes place in a convex region of
constant attenuation, the SPECT data can be converted into exponential X-ray projections
(Markoe 1984) and the results of this paper can be applied. Further work is required to handle
situations where the attenuation is not constant in the emission region.
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Figure 1: (a-left) Illustration of the half equatorial band including a half great circle. (b-right)
Set A of vectors n corresponding to all the half great circles in €2.
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Figure 2: (top) Original phantom, (middle) FBP reconstruction fy using the data on €, (bottom)
reconstruction using 10 terms of the Neumann series (equation 26). Reconstruction time: about 5 min.

cpu per iteration on a SUN ULTRA 10 (450 MHz, 700Mb RAM).
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