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Abstract

The RSH SPECT scanner provides parallel-beam attenuated projections for a fully
3D acquisition geometry. The geometry can be represented by circles on the unit
sphere of projection directions, one circle for each position of the detector head. Un-
like most other fully 3D geometries this one is particularly challenging because there
are no 2D subsets in the data. When no attenuation is present, it is well-known that
an unmeasured projection can be synthesized if it lies inside one of the measured cir-
cles. The main result of this work is that under some assumptions on the attenuation
distribution, attenuated projections within a circle can be synthesized from available
attenuated projections. One consequence is that RSH SPECT projections can be re-
binned into a conventional SPECT geometry for which analytic attenuation correction
techniques are available.

1 Introduction

In Single Photon Emission Computed Tomography (SPECT) imaging the objective is to
establish the concentration of a radioactive tracer within the 3D body under investigation.
The limitations in SPECT are mainly due to attenuation of the photons and to the poor
sensitivity of the collimator-detector system. To overcome this latter limitation, a number

of researchers have been considering alternatives to the conventional parallel-hole collimator
(figure 1a).

The use of a rotating slant-hole (RSH) collimator with two (figure 1b) or four segments
increases the detection sensitivity by allowing a higher photon count during the same
acquisition period (Clack et al 1996). The collimator-detector system is successively placed
at different angular positions around the body to be studied. For each of these positions,
the collimator is rotated about its center, while allowing several projections (two or four
according to the collimator used) to be acquired simultaneously. This acquisition mode

constitutes the RSH SPECT geometry as described in Clack et al (1996).

The RSH SPECT scanner provides a set of attenuated projections. The exponential X-ray
transform is a mathematical tool used in SPECT reconstruction for modeling and correct-
ing for attenuation. Using the exponential X-ray transform, it is possible to reconstruct
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(a)
Figure 1: Different types of collimators. a) conventional parallel-hole collimator, b) RSH
collimator.

the emission map with attenuation correction, assuming the attenuation is constant in the
emission region. Attenuated projections can be converted to exponential parallel-beam
(EPB) projections using a well-known point-by-point scaling (Markoe 1984). Moreover,
even if the attenuation map is unknown, the consistency conditions of the exponential
X-ray transform provide an effective method to find the scaling coefficients (Mennessier et

al 1999).

In two-dimensions (2D), image reconstruction from EPB projections has been thoroughly
studied over the past twenty-five years and is now well understood, especially due to the
works of Tretiak and Metz (1980) and Metz and Pan (1995) for a constant attenuation
over 2m. When the attenuation coefficient of the projections varies continuously from 0 to
27, Kuchment and Schneiberg (1994) have derived a filtered back-projection (FBP) recon-
struction algorithm. However, all these methods deal with data acquired on a full 27 range.
Very recent works (Noo and Wagner 2001, Wagner 2002) provide an inversion formula for
the case of only 180-degrees of exponential data. These results deal with EPB projections
on 180-degrees whose attenuation coefficient is constant or can vary discontinuously from
one projection to one another.

The acquisition geometry for RSH SPECT is a fully 3D geometry for which an inversion
formula for the exponential X-ray transform has not yet been established. Only a few
specific 3D geometries have been treated. In Weng et al (1996) and in Hazou and Solmon
(1988), the EPB projections must be finely sampled on the unit sphere while the algo-
rithm described in Wagner and Noo (2001) only handles collections of projections whose
directions can be described as a union of great circles on the unit sphere. We observe
that all these geometries assume measuring opposing views. Recently, Noo et al (2002a)
have proposed some results for non-symmetric data sets. These results deal with EPB
projections acquired on a half equatorial band on the unit sphere. Symmetric or not, we
note that all these geometries satisfy Orlov’s condition (Orlov 1975). Partial results have
also been obtained for any geometry satisfying Orlov’s condition (Noo et al 2002b).

We give a description of the general RSH geometry in section 2. In section 3, we generalize
Orlov’s result (Orlov 1975) and establish an exact rebinning algorithm that allows us to
calculate new EPB projections (with any attenuation coefficient) from EPB projections
given on a circle in the RSH geometry. In section 4, we use these new theoretical results to
obtain a method of exact reconstruction from a set of complete EPB projections (complete
in the sense of Orlov (1975)) for the RSH SPECT geometry. Finally, in section 5, we

illustrate the efficacy of the methods of sections 3 and 4 using simulated data for a simple



geometry example.

2 The RSH SPECT geometry

Figure 2 illustrates the RSH SPECT geometry. In this figure, O is the origin of the unit
sphere S2. The orientation of the detector with respect to the origin is given by its unit
normal vector ¢;. We assume N different positions of the detector (i = 1,2,...,N). Also,
we assume that for each position ¢ of the detector, the collimator has a slant angle equal to
;. The unit vector n defines the direction of photon propagation through the collimator.
When the collimator rotates 360 degrees about itself, the vector n describes, on the unit
sphere, a circle C; of angular aperture 2a; and whose axis of symmetry is the vector c;.
The RSH SPECT geometry is mathematically defined by the trajectory 2 on the unit
sphere corresponding to the union of all the circles Cj.
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Figure 2: Illustration of the RSH SPECT geometry.

In a partially simplified model, the projection measured in the direction n € Q can be
described by the formula

+oo +oo

g(n,s) =/ f(s+1tn) eXp(—/t dluo(§+ln)), sn=0, (1)
—0o0

where f(z) is the concentration of the radioactive tracer to be reconstructed and po(z) is

a known function describing the attenuation of the medium. In this expression, vector s is

orthogonal to n and is used to specify different lines of integration in the direction n. In

practice, s is defined by the detector locations for the g(n,-) projection.

A simplification of the above relation between the data and the image f occurs when
the activity is contained in a convex region where g is constant. We will assume that
this condition holds. In this case, the reconstruction of f from g is equivalent to the
reconstruction of f from the EPB projections

oo
pu(n,s) = /+ f(s+tn)ettdt, sm=0, neQ (2)
—0oC

where p is the (constant) value of pg in the activity region. As explained in Markoe
(1984), the EPB projection p,(n, s) is obtained from g(n, s) by simple multiplication with
a function my,(n, s) calculated from the attenuation function pg(z). For example, if the
convex region of constant attenuation including all the activity is a sphere centered at
L = 07

9(n,5) = pu(n, s) My, (n, 5) (3)



with
My, (R, 8) = exp (/0+oo dl po(s + lg)) . (4)

See Markoe (1984) for more general expressions of m,(n,s).

Note that, even if the attenuation map is not known, g(n, s) can be converted into p,(n, s)
in a reasonably accurate way using the consistency conditions for the exponential x-ray
transform (Mennessier et al 1999).

3 Rebinning theory

Orlov (1975) pointed out that (in the absence of any attenuation) parallel-beam (PB)
projections measured on a curve of the unit sphere can be used to synthesized unmeasured
PB projections, whether or not the measured data provide enough information for exact
reconstruction of f. For example, PB projections measured on one of the RSH circle C;
shown in figure 2 can be used to compute the PB projection of f in any direction a € Cj.

In this section, we generalize the above result by Orlov; we show that EPB projections
measured on a RSH circle C; can be used to synthesize the EPB projection of f in any
direction o € C; for any finite attenuation coefficient py. The synthesization or rebinning
formula is conceptually valid for any closed curve on the unit sphere (Wagner 2002). How-
ever, for clarity and conciseness purposes the exposition is restricted to the case of a RSH
circle.

3.1 Description of the rebinning formula

Let us consider one of the circles C; making up  and let o be a unit vector situated in
the region of $2 bounded by C;. Figure 3 illustrates the situation. We use C(a) to denote
the great circle orthogonal to o and we introduce four unit vectors a, b, 8 and 9+ all lying
on the great circle C(a). The vectors a and b are defined mathematically by

Cc, X &

a=———, b=axa (5)
llei x o]
while
8 = cosfBa-+sinfb (6)
0+ = —sinfa+cosfb

where € belongs to the interval [0,27]. For the case where the vector a corresponds to ¢;
we choose a arbitrarily on C(a).

The great circle orthogonal to 8, denoted C(8), cuts the circle C; at a point n given by
n = cost(6) a + sinp(6) 6 (7)

where the range of ¢(8) depends on ¢ and is always a subset of [0, 2c;]. We show in section
3.2 that the function ¢(8) is given by

0 —sin(koy) cosf + y/sin? o — sin?(kay) sin’ 8
o YO _ (kai) (kai) ®)

2 cos a; + cos(koy)




Figure 3: Rebinning from a set of exponential projections corresponding to a circle C;.

where (ka;) is the angle between ¢; and a (k €]0,1[). Finally, we introduce the vector
nt =6 xn=—siny(d) a+ cosy(6) o+

From EPB projections p,(n,s) known for n € Cj, it is possible to calculate the EPB
projection py,(a,s) for any finite value p; of the attenuation coefficient. To this end,
the angular dependent exponential Radon transform (AD-ERT) of a 2D function is used.
Appendix 1 gives an overview of this transform and its inverse, following the results by

Kuchment and Shneiberg (1994).
Let g(0,1) be the AD-ERT of the projection p,, (¢, s),

+oo
90.0) = [ prale 10+ 584y ds, ©)

with attenuation coefficient
_ = p1 cosy(0)

0) = 1
In section 2.3, we show that
+oc
9(6,1) = / D, 18 + tnt)era @ty (11)
with 5(0)
cos — ,
na6) = £ H (12)

sin ¢(0)
for all (0,1) € [0,27[ x | —00, +00[. The expression on the right hand side of (11) is a sample
of the 2D ERT of the RSH projection p,(n, s) with attenuation coefficient j14(6). A sample
of the AD-ERT of the projection p,, (a, s) is therefore obtained by judiciously integrating
in the plane of one of the available projections. By applying the relation (11) for all (8,1),
we obtain the complete AD-ERT of the projection p,, (a, s), from which p,, (o, s) is then
obtained using the reconstruction formula of Kuchment and Shneiberg (1994):

27
pun(es9) = [ gr(6,5.8)e22" dp (13)
0
where oo
gr(6.) = [ drho,1-1)g(e.0), (14)



with the filter h(6,1) given by its Fourier transform

H(,0) = / " h(@,l)e_ﬂ""’dgz{ o]+ sen(o) k(@) itlol > lma(@)l/(2m)

oo 0 otherwise

In this expression, u5(6) is the derivative of pa(8) and j = +/—1.

In broad terms, the desired projection p,, is obtained by filtered backprojection of its
AD-ERT sinogram g. This sinogram is built row-by-row from ERT sinograms of existing
projections.

In practice, large values of p2(8) can introduce numerical difficulties due to the form of
H(6,0). Although any value of py can be used in principle, the safest choice is p; = p
because p2(6) is then bounded by ptan «;.

3.2 Derivation of the rebinning formula

In order to prove the rebinning formula of equations (9) to (12), we let
e 1y pa(O)t
r0) = [ pulnig+tut)ers® ay (16)
with p4(6) given by equation (12) and show that r(8,1) is identical to g(8,[) of equations
(9) and (10).
From equation (2), we can write
L oo i ;
pulm, 18+ ¢nt) = [ fU8+tnt 4 tm) et s (17)

Introducing (17) into (16) gives
+o0o +oo ,
r(6,1) = / / F(8 + t'nt + tn) ertFraOF gt gy (18)

Anticipating the change of variables t'nt + tn = s'a + s8*, we note from the definition of
n and n' that t = s’ cos(0) + s sin(6) and ¢! = —s' sin(6) + s cos (). Using these
expressions for ¢ and t', and expression (12) for p4(6) we see that

pt+ pa(0)t = p s’ cosp(0) + s sinp(9)]
pcosy(6) = —s' sin s cos
B — pa cosy(6)
sin 1 (6)
= s+ pa(®)s (19)

= s +

where p2() is given by (10). Similar manipulations show that un + ug(8)nt = ua +
p2(0)8+ which has the geometrical interpretation illustrated in figure 4. Performing the
change of variables from (¢,t') to (s, s’) in (18) and using (19) gives

“+ 00 +o00 ,
r(0,1) = / / 8+ s'a + sot) etrs +r20)s gs 4! (20)



Figure 4: Geometrical description of the relationship between pg(0) and pa(6).

At last, we rearrange terms and use equation (2) to obtain

+oo +00 .
r(6,1) =/ {/ f(s'g+lg+sgl)ems}euzw)sds

— 00 — 00

+oo
= [ puslasle+ sty e ds (21)

This last expression is identical to g(8,1), the 2D AD-ERT of p,, (o, s), as given by equation
(9).
To derive expression (8) for 1(6), we use the fact that n = cos () a+sin () 8+ is lying
on the circle Cj :

n.c; = cos oy (22)

Using ¢; = cos(koy) a — sin(kay) b and replacing n by its expression in equation (22) gives
the following trigonometric equation w.r.t 1(6) :

cos () cos(koy) —siny() sin(ka;) cosf = cos oy (23)

To solve this equation, we let = tan(1(6)/2). Expressing cos(6) and sin () in terms
of z in equation (23) gives an equation of the second order w.r.t . The resolution of this

last equation gives expression (8) for tan(vy(6)/2), which corresponds to the solution for
which ¥(6) lies in [0, 2¢;].

4 RSH-SPECT reconstruction

From the new theoretical results of section 3, we have derived a data completeness condition
for inversion of the exponential X-ray transform in RSH-SPECT geometry (Wagner 2002) :

For any set Q of circles on the unit sphere whose centers ¢;(1 = 1,...,N) lie
on a common great circle C(e,), the activity f can be accurately reconstructed
from the corresponding exponential parallel-beam projections if every great circle
of the unit sphere intersects €.



Figure 5: (left) Example of an RSH-SPECT geometry without opposing views. (right) left
figure viewed from the top with illustration of the direction a(¢) of synthesized projections.

This condition is equivalent to Orlov’s condition (Orlov 1975) for the inversion of the X-
ray transform in the non-attenuated case. This result is particularly interesting because it
shows that opposing views are not required for exact and stable reconstruction.

One example of RSH-SPECT geometry which satisfies our condition is given in figure 5a. It
consists of 3 circles of angular aperture equal to 60 degrees and whose centers are separated
by 120 degrees.

The validity of the data completeness condition is proved as follows. Consider a set of
data © which satisfies this condition. From the EPB projections p,(n,s) known on €,
the rebinning technique can be used to (1) synthesize the EPB projection p,(a,s) for any
direction o that lies on the great circle C(e,) and is inside one of the RSH circles, and (2)
synthesize the EPB projection p_,(a,s) for any direction a that lies on the great circle
C(e,) and is not inside one of the RSH circles, since p_,,(a, s) = pu(—a, s) and —a is inside
one of the RSH circles when a is not. Let a(¢) = (cos ¢, sin ¢, 0) describes one half of C(e,)
with ¢ € [0,7[, as illustrated in figure 5. From the synthesized projections, it is always
possible to create a set of projections p,, (a(¢),s) with a function p1(¢) that is piecewise
constant, has a finite number of discontinuities, and is such that |u;(¢)| = p. Figure 6
illustrates such a function for the RSH-SPECT geometry of figure 5. From the projections
Pui (@), s) obtained for ¢ € [0,7[, f can be reconstructed slice-by-slice perpendicular
to e, using the 2D reconstruction formula given in Wagner (2002) and also in Pan et al
(2002). This 2D formula, given in appendix 2, inverts the AD-ERT over 180 degrees for
an attenuation coefficient of the form of p1(¢).

5 Simulations and Results

In this section, we study an example RSH SPECT geometry. The set 2 under consideration
consists of 3 circles whose centers ¢; are situated on the great circle C(e,) at regular intervals
of 60 degrees and with a slant angle of 30 degrees (for i = 1,2,3). Figure 6 illustrates the
situation. According to Orlov (1975), this set is complete because all great circles on the
unit sphere intersect 2. An exact reconstruction is therefore possible in the non-attenuated
case. We show below that exact reconstruction is also possible for the attenuated case.



Figure 6: Illustration of the RSH SPECT geometry used for the experiment of section 4.

There are 3 distinct positions of the detector and we have simulated attenuated projections
for 32 angular positions of the collimator rotating about its own axis, which makes a total
of 3 x 32 = 96 simulated attenuated projections for this RSH SPECT geometry. Each
attenuated projection was sampled on a grid of 100% pixels of side 1.5 mm. Each data
point in a given attenuated projection was computed using analytical formulas based on
(1). The emission map was a simplified model of the heart consisting of three ellipsoids,
two of which modeled the ventricles with 20% of the specific activity of the myocardium.
The attenuation map consisted of 4 ellipsoids, representing the thorax, the two lungs, and
the spinal column. Figure 7 shows the emission and attenuation maps for two slices in
different orientations.

As can be seen in figure 7, the attenuation is constant in the emission region. For recon-
struction of f, we converted the simulated attenuated projections into EPB projections
using the method of Markoe (1984) with the known expression of the attenuation map.
The attenuation coefficient for the resulting EPB projections was g = 0.15/cm. We then
applied the rebinning method (equations (9) to (15)) with p; = p to synthesize the EPB
projections p,(c, s) for 181 directions o uniformly sampled on half of the great circle C(e,)
with an angular step of 1 degree. The synthesized projections were obtained on a grid of
1002 pixels of side 1.5 mm. Figure 8 shows one of the 181 EPB projections synthesized by
the rebinning method.

The 181 synthesized EPB projections constitute a set of projections in the conventional
(180-degree) parallel-hole collimator SPECT geometry. For this configuration an exact
inversion formula now exists (Noo and Wagner 2001). We applied this algorithm to re-
construct, slice by slice perpendicular to e, the image f on a grid of 100® voxels of side
1.5 mm. The quality of the reconstruction given in figure 9 illustrates the efficacy of the
reconstruction method. More simulations and an example using real phantom data can be

found in Wagner et al (2002).

6 Conclusions

We have derived an exact rebinning method that allows new exponential parallel-beam
projections to be calculated from a set of known exponential parallel-beam projections
given on a circle of the unit sphere of directions. These new theoretical results generalize
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Figure 7: Illustration of the emission and attenuation maps. The images in the left column

shows a tranverse slice while the images in the right column shows a coronal slice. The
top row shows a superimposition of the attenuation and emission maps. The bottom row
shows the attenuation map only. The emission map lies in a region of constant attenuation

pu=0.15cm™!.

Orlov’s theory for the non-attenuated case. As a corollary, we have presented an exact
method of inversion of the exponential X-ray transform for any RSH-SPECT geometry
that satisfies Orlov’s condition and whose detector positions ¢; lie on a common great circle
say C(e,) (i.e. the detector gantry axis is e,). Our results were tested using simulations
which illustrated the exactness of the method.
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Appendix 1

In this section, we give a brief overview of the AD-ERT of a 2D function and its inverse,
following the results by Kuchment and Shneiberg (1994). The 2D function is defined as



Figure 8: Illustration of the rebinning method (k = 0.5). Left: Ideal projection. Right:
Synthesized projection.

Figure 9: Reconstruction of the emission map of figure 7 from simulated RSH-SPECT data
using the geometry of figure 6. Left: transverse slice. Right: coronal slice.

p(s) with s = (u,v), using Cartesian coordinates v and v measured along some directions
a and b, respectively.

Let @ = cosfa+sinfb and 8+ = —sinfa+ cosfb, with 6 € [0,27]. Let I €] — oo, +00].
Let p(8) be a continuously differentiable function of period 27. By definition, the AD-ERT
of p is the function which associates

+oc
9(6,1) = / w(l0+ 501) er® d (24)

to each value of (6,1). For a fixed 6, the set of values of g(6,1) obtained by varying [ is an
exponentially-attenuated projection of w.

A filtered backprojection reconstruction of p from g is possible when g is known for (6,1) €

[0,27[x] — 0o, +00]. The filtering step of this reconstruction modifies the projections into
+oo

gr(6,) = [ ho,1-1)g(0,1)al (25)

oo

where h(8,1) is given by equation (15). The backprojection step gives

27 n )
p&)= [ ar(0,0)]_, e =2 do (26)
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