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Abstract

The RSH SPECT scanner provides parallel-beam attenu-
ated projections for a fully 3D acquisition geometry. The
geometry can be represented by circles on the unit sphere
of projection directions, one circle for each position of the
detector head. Unlike most other fully 3D geometries this
one is particularly challenging because there are no 2D
subsets in the data. When no attenuation is present, it
is well-known that an unmeasured projection can be syn-
thesized if it lies inside one of the measured circles. The
main result of this work is that under some assumptions
on the attenuation distribution, eattenuated projections
within a circle can be synthesized from available attenu-
ated projections. One consequence is that RSH SPECT
projections can be rebinned into a conventional SPECT
geometry for which analytic attenuation correction tech-
niques are available.

1 Introduction

In Single Photon Emission Computed Tomography
(SPECT) imaging the objective is to visualize the concen-
tration of a radioactive tracer within the 3D body under
investigation. The limitations in SPECT are essentially
due to attenuation of the photons and to the poor sen-
sitivity of the collimator-detector system. A number of
researchers have been considering alternatives to the con-
ventional parallel-hole collimator (figure 1a).

The use of a rotating slant-hole (RSH) collimator with
two (figure 1b) or four segments significantly increases the
detection sensitivity by allowing a higher photon count
during the same acquisition period [1]. The collimator-
detector system is sucessively placed at different angular
positions around the body to be studied. For each of these
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Figure 1: Different types of collimators. a) conventional
parallel-hole collimator, b) RSH collimator.

positions, the collimator is rotated about its center, while
allowing several projections (two or four according to the
collimator used) to be acquired simultaneously. This ac-
quisition mode constitutes the RSH SPECT geometry as
described in [1].

The RSH SPECT scanner provides a set of attenuated
projections. The exponential X-ray transform is a math-
ematical tool used in SPECT reconstruction for modeling
and correcting for attenuation. Using the exponential X-
ray transform, it is possible to reconstruct the emission
map with attenuation correction, assuming the attenua-
tion is constant in the emission region. Attenuated pro-
jections can be converted to exponential X-ray projections
using a well-known point-by-point scaling [2]. Moreover,
even if the attenuation map is unknown, the consistency
conditions of the exponential X-ray transform provide an
effective method to find the scaling coefficients [3].

In two-dimensions (2D), image reconstruction from ex-
ponential X-ray projections has been thoroughly studied
over the past twenty-five years and is now well under-
stood, especially due to the works of Tretiak & Metz [9]
and Pan & Metz [10]. A very recent work [11] provides an
inversion formula for the case of only 180-degrees of expo-
nential data. The acquisition geometry for RSH SPECT
is a fully 3D geometry for which an inversion formula for



the X-ray transform has not yet been established. To
our knowledge, only a few simple geometries have been
treated. In [4] and [5], the exponential projections must
be finely sampled on the unit sphere while the algorithm
described in [6] only handles collections of projections on
any subset of the unit sphere described as a union of great
circles. Currently, we do not know if it is possible to ob-
tain exact reconstructions from more general collections,
such as those satisfying Orlov’s condition [7] for the non-
attenuated case.

We give a description of the general RSH geometry in sec-
tion 2. In section 3, we generalize Orlov’s result [7] and
establish a rebinning technique which allows us to calcu-
late new exponential projections (with any attenuation
coefficient) from exponential projections given on a circle
in the RSH geometry. Finally, in section 4, we use these
new theoretical results to obtain a method of exact recon-
struction from a set of complete exponential projections
(complete in the sense of Orlov [7]) for the RSH SPECT

geometry.

2 The RSH SPECT Geometry

Figure 2 illustrates the RSH SPECT geometry. In this
figure, O is the origin of the unit sphere S?. The orien-
tation of the detector with respect to the origin is given
by its unit normal vector ¢;. We assume N different po-
sitions of the detector (i = 1,2,...,N). Also, we assume
that for each position 7 of the detector, the collimator has
a slant angle equal to a;. The unit vector n defines the
direction of photon propagation through the collimator.
When it effects a rotation of 360 degrees about itself, the
vector n describes, on the unit sphere, a circle C; of angu-
lar aperture a; and whose axis of symmetry is the vector
¢;- The RSH SPECT geometry is mathematically defined
by the trajectory €2 on the unit sphere corresponding to
the union of all the circles Cj.

After conversion from attenuated projections, the data
available for image reconstruction are the exponential X-
ray projections
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for the directions n € 2. The 3D image to reconstruct is
f while p is the known, constant attenuation coefficient.
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Figure 2: Illustration of the RSH SPECT geometry.

3 Theory

We show here that it is possible to calculate any paral-
lel projection (with any finite attenuation coefficient ;)
of whose direction « is situated in the region of the unit
sphere bounded by one of the circles making up 2. In
section 4 we show how the rebinning technique can be
used to create, from the RSH SPECT data, a collection of
exponential projections corresponding to a conventional
parallel-hole SPECT geometry for which an exact inver-
sion formula exists. An example reconstruction is given.

Let us consider one of the circles C; making up €2 and let
a be a unit vector situated in the region of §? bounded
by C;. Figure 3 illustrates the situation. We use C(a) to
denote the great circle orthogonal to a and we introduce
four unit vectors a, b, # and QL all lying on the great circle
C(a). The vectors @ and b are defined mathematically by

C X a

a= , b=axa (2)
lle; x a|
while
0 = cosfa+sinfb (3)
QJ‘ = —sinfa+cosfb

where 0 belongs to the interval [0, 27]. For the case where
the vector a corresponds to ¢; we choose g arbitrarily on

C(a).

The great circle orthogonal to 8, denoted C(f), cuts the
circle C; at a point n given by

n = cos(6) a +sinv(6) 6 (4)

where (0) €]0,n[ for all # € [0,2n]. We show that the
function (#) is given by

»(O) — sin(ka;) cosf + \/sin2 a; — sin®(ka;) sin® @
tan =

2 cos a; + cos(ka;)

(5)



Figure 3: Rebinning from a set of exponential projections
corresponding to a circle C;.

where (ka;) is the angle between ¢; and a (k € [0,1]). Fi-
nally, we introduce the vector n = xn = —sin () a+

cosp(0) 0.

From exponential projections p,(n,s) known for n €
C;, it is possible to calculate the exponential projection
Py, (@, s) for any finite value py of the attenuation coeffi-
cient. To this end we show that
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where ¢F(#,1) is given in the Fourier domain by

G¥(8,0) = G(,0) H(6,0) and
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where p5(0) is the derivative of p4(0) and j = /—1.

We note that although any value of p; can be used in
principle, it is safer in practice to use p; = p to control
the behavior of ps(8).

4 Simulations and Results

In this section, we study an example RSH SPECT geom-
etry. The set €2 under consideration consists of 3 circles
whose centers ¢; are situated on the great circle C(e,) at
regular intervals of 60 degrees and with a slant angle of
30 degrees (for 1 = 1,2,3). Figure 4 illustrates the situa-
tion. According to Orlov [7], this set is complete because
all great circles on the unit sphere intersect 2. An exact
reconstruction is therefore possible in the non-attenuated
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for all (8,1) € [0, 27 X ] — 00, +o00[. The expression on the
left of (6) is the 2D exponential Radon transform (with
attenuation py depending on projection angle, and which
we will denote AD-ERT for Angle Dependent Exponen-
tial Radon Transform) of the projection p,, (a,s) while
the expression on the right constitutes a sample of the
2D exponential Radon transform (with attenuation g
depending on angle) of the projection p,(n,s). A sample
of the AD-ERT of the projection p,, (a, s) is therefore ob-
tained by judiciously integrating in the plane of one of the
available projections. By applying the relation (6) for all
(0,1), we obtain the AD-ERT of the projection p,, (a, 3),
which we denote g(#,1). The problem of the inversion of
the AD-ERT was resolved in [8], and allows us to recon-

possible for the attenuated case.

Figure 4: An example RSH SPECT geometry.

There are 3 distinct positions of the detector and we have
simulated 32 angular positions of the collimator rotating
about its own axis, which makes a total of 3 x 32 = 96
simulated attenuated projections for this RSH SPECT
geometry. A phantom modeling the heart was used for
the emission map. It was composed of three ellipsoids,
two of which modeled the ventricles with 20% of the spe-
cific activity of the myocardium. The attenuation map



was modeled with 4 ellipsoids, representing the thorax,
the two lungs, and the spinal column. Figure 5 shows
the emission and attenuation maps for two slices in dif-
ferent orientations. Each attenuated projection was sam-
pled on a grid of 100? pixels of side 1.5 mm. The atten-
uation coefficients being constant in the emission region,
we converted the attenuated projections to exponential
projections with g = 0.15/cm.

o= 97
o= 97

£ = 104

£ = 104

Figure 5: Top: Emission and attenuation maps superim-

posed. Bottom: Attenuation map only.

We applied the rebinning method (with p; = p) to cal-
culate the exponential projections p,(c,s) for 181 direc-
tions a uniformly sampled on the half of the great circle
C(e,) with an angular step of 1 degree. The calculated
projections were reconstructed on a grid of 100? pixels of
side 1.5 mm. The details of the reconstruction algorithm
will be given at the conference. Figure 6 shows one of
the 181 exponential projections calculated by the rebin-
ning method. This figure illustrates the exactness of the
rebinning method.

The 181 calculated exponential projections constitute
a set of projections in the conventional (180-degree)
parallel-hole collimator SPECT geometry. For this con-
figuration an exact inversion formula now exists ([11]).
We have applied this algorithm to reconstruct, slice by
slice perpendicular to e¢_, the image f on a grid of 1003
voxels of side 1.5 mm. The quality of the reconstruction

Figure 6: Illustration of the rebinning method (k = 0.5).
Left: Ideal projection. Right: Synthesized projection.

given in figure 7 illustrates the efficacy of the reconstruc-
tion method.

Reconstructions with simulated noisy data have also been
successful, and reconstructions with data from a proto-
type RSH SPECT scanner is being submitted to the 2001
IEEE MIC conference.

Figure 7: Heart phantom reconstruction for 4 = 0.15/cm.
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