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Three-dimensional image reconstruction from
exponential parallel-beam projections

Jean-Marc Wagner, Frédéric Noo

Abstract— In this paper, we present an FBP algorithm
suitable for image reconstruction from exponential X-ray
(parallel-beam) projections sampled on any subset of the
sphere that includes great circles. This algorithm is similar
to the TTR-algorithm of Ra et al. (1982) for non-attenuated
projections. It is derived by combining all reconstructions
that can be obtained from subsets of measurements cor-
responding to great circles. Our results generalize those
published by I. Hazou (1988) and Weng et al. (1996) for re-
construction from projections sampled on the unit sphere.
However, they remain modest as they only apply to specific
sets of measurements.

Keywords— attenuation, parallel-beam projections, 3D re-
construction.

I. INTRODUCTION

This work presents new mathematical results concerning
three-dimensional (3-D) image reconstruction from expo-
nential X-ray (parallel-beam) projections.

The exponential X-ray transform is a mathematical tool
useful in SPECT imaging and also in Intensity Modu-
lated Radiation Therapy [1]. In 2-D SPECT, it is the
basis for the development of fast analytical reconstruc-
tion methods with accurate correction for attenuation and
depth-dependent collimator-response [2], [3]. In fully 3-D
SPECT, it provides a way to perform accurate attenuation
correction without transmission measurements [4], which
is highly attractive for sophisticated imaging systems such
as the Rotating-Slant-Hole scanner [5].

2-D image reconstruction from exponential X-ray pro-
jections has been widely studied over the last twenty years
and is now well-understood, especially thanks to the signif-
icant work of Pan and Metz [6], [7]. In fully 3-D geometry,
the situation is quite different. To our knowledge, only two
works concerning exact 3-D reconstruction from exponen-
tial X-ray projections have been published so far. These
two works (see [8] and [9]) assume both that the projec-
tions are finely sampled on the unit sphere. It is currently
unknown if exact reconstruction can be achieved from more
general data sets, such as those satisfying Orlov’s condition
for reconstruction in the non-attenuated case [10]. Such a
question is mathematically difficult to answer because 3-D
reconstruction theory for non-attenuated X-ray projections
[11] is not readily modified to handle exponential X-ray
projections.

In this paper, we present a closed-form inversion for-
mula for image reconstruction from exponential X-ray pro-
jections sampled on any subset of the unit sphere that in-
cludes great circles. A basic example of such a subset is the
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equatorial band illustrated in figure la. Although unusual,
we note that this data acquisition geometry could be easily
implemented on existing SPECT scanners.
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Fig. 1. (a) Description of the equatorial band € (b) De-

scription of the set A.

The derivation of our formula follows the same lines
as the work of Ra et al. [12] for image reconstruction
from non-attenuated projections. From the theory for
the 2-D Radon transform, Ra et al. derived the first
True Three-dimensional Reconstruction (TTR) algorithm
for non-attenuated X-ray projections. From the theory for
the 2-D exponential Radon transform, we have derived a
true 3-D reconstruction algorithm for exponential X-ray
projections. This algorithm, called the A-TTR algorithm,
where A stands for “attenuated”, processes the data in a
filtered-backprojection (FBP) way.

Our results generalize those published by Hazou [8] and
Weng et al. [9] for projections sampled on the full sphere.
However, they remain modest as they only apply to spe-
cific sets of measurements - those including great circles.
We believe that our work is one step further towards full
understanding of the 3-D exponential X-ray transform.

This paper comprises four sections. Section II gives a
general description of the A-TTR algorithm and provides
mathematical details of its derivation. Section III concerns
applications of the A-TTR algorithm to particular geome-
tries ; we investigate the full sphere and the equatorial band
geometries. Conclusions are given with a short discussion
in section IV.
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II. A-TTR ALGORITHM
A. Notations

The data used for reconstruction are exponential X-ray
projections

+ oo
p(0,s) = / dt f(s+t8)e™",  s-6=0 (1)
— o0

“measured” for a set of directions 6 on the unit sphere. The
3-D image to be reconstructed is f and g is the attenuation
coeflicient. Vector s is orthogonal to 8 and is used to specify
different lines of integration in the direction 6. See figure 2.
We assume that the projections are complete, i.e. that
p(8,s) is known for all s orthogonal to 6.

Fig. 2. Description of the projections: s is used to specify
different lines of integration in the direction 8, 0 is the
origin of the image space.

Technically speaking, there exist no scanners which di-
rectly provide exponential X-ray projections. However, to
symplify the exposition we will assume that exponential
X-ray projections can be directly measured. In SPECT,
exponential X-ray projections are obtained from the mea-
sured attenuated projections when the attenuation coeffi-
cients are constant in the emission region [13].

If a detector with pixels of coordinates (u,v) oriented
along unit orthogonal vectors a and f perpendicular to 8
is used to measure p(@, ), one can write

ve€R, veR (2)

§=’U4Q+Uﬁ,

and

—+oo

(8, 5) = po (8 u,v) = / dt flua+vp+i8) . (3)

The set of directions @ for which p(,s) is known is de-
noted Q. We assume that €2 is symmetric (i.e. if 8 € Q,
then —8 € Q) and contains great circles. A great circle
is the set of unit vectors which are orthogonal to a given
direction. We use the notation C(n) to describe the great
circle of unit vectors orthogonal to n. The set of vectors n
corresponding to all great circles in €2 is denoted A. Note
that A is symmetric. See figure 1b for an illustration of A
for the equatorial band.

It is important to note that any great circle defines a
complete set of projections from which exact reconstruc-
tion of f is possible. When Q includes more than one great
circle, the data p(#,s) are therefore redundant. In princi-
ple, the reconstruction from data on 2 could be carried out

by applying any 2-D reconstruction formula to a number
of great circles in Q and by averaging the different results
so obtained. Such an approach is however difficult to im-
plement in practice due to finite sampling considerations.
The algorithm presented hereafter presents the advantage
of being a fully 3-D reconstruction method. Moreover, it
shows that a closed-form inversion formula can be derived
for image reconstruction from exponential X-ray projec-
tions sampled on more practical sets than the full unit
sphere.

B. Algorithm description

The A-TTR algorithm is an FBP algorithm which pro-
vides exact reconstruction of f according to the backpro-
jection formula

f(z)=/QdQ e hozlpF (g 5 —(z-0)8) (4)

where p' (8, s) is obtained from p(8, s) by 2-D convolution:

The convolution filter A is given by

2o bullsl) g =) i gy =g s
e =q Nl ! .
0 otherwise
(6)

where the symbol X denotes a cross product, w can be any
even positive function defined on the unit sphere (w(—n) =

w(n)),
c= 1//Adﬂw(ﬂ)7 (7)

and k, is the notch filter used in FBP inversion of the 2-D
exponential Radon transform:

/ dv M eijrrl/
v|>pof2m 2

_cos(po 1) + po 7 sin(po 7)
472 92 :

ky (r) =
(8)

The arbitrary definition of w(n) in the above equa-
tions shows that there exist in general an infinite number
of filtered-backprojection formulas for reconstruction from
projections sampled on Q. This property is a consequence
of the data redundancy. As in the non-attenuated case [11],
different definitions for w(n) are likely to yield a different
image quality in the presence of data noise. The effects of
w(n) on noisy data will however not be analyzed in this
paper. In section ITI, w(n) = 1 will be selected, which cor-
responds to giving the same weight to all great circles of
data in Q.

As readily observed from its definition, the filter h is a
generalized function with singularities at s = 0. The imple-
mentation of equation (5) therefore requires the use of some
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regularization technique. For an accurate computation of
pF (8, 5) from samples of p(8, s) on a Cartesian grid, we rec-
ommend the implementation of (5) in the Fourier domain
with some apodizing frequency window, like the Hanning
window. Such an implementation requires the knowledge
of the Fourier transform of the filter A. We show in the
next section that this transform is

H(8,v) = /  dse )
s:6=0

/ dnw(n)|v-(nx0)|, v-
Jex(na

N o

where C*(8) is a subset of the great circle C(8):
@) =c@\{nec®) : |z-(nx0)|<po/2r}. (10)

Note, in particular, that C*(8) = @) when ||v|| < po/27 be-
cause |v-(nx 8)| < po /27 for any n in this case. Therefore,
(11)

H@O.) =0 if lul] < po/2m.

C. Algorithm derivation

This section may be skipped at first reading. Section III
provides details on the application of formulas in section
I1.B to specific geometries.

To derive the A-TTR algorithm, note that exact recon-
struction of f is possible from data on any great circle C(n)
in Q. Such a reconstruction can be achieved by splitting
the reconstruction volume into a set of slices orthogonal
to n and applying a conventional 2-D algorithm for recon-
struction of each slice. Using the 2-D FBP reconstruction
formula of Tretiak and Metz [14], one gets the following
expression for f(z) from data on C(n): let @ = n X 6§ and
B = n be the detector axes used to describe p(6,s), then:

dg e "zl pl(0,z - a,z- ) (12)

f@EﬂLm=/

C(n)

where

pg(g7u71‘,) = /

R2

du' dv' pp(8,u —u',v —v")§(v") ku(u').

(13)
With detector-independent notations, the filtering step
of equation (13) is rewritten as

f@g=/ ds' p(0,s — ) 3(s' - n) k(s -a)  (14)
s’-6=0

and

_ / d8 58 1) = pF (8,5 — (z-0)6) .
Q
(15)

since C(n) C Q and n-0 =0 for 8 € C(n).

Conceptually, a reconstruction formula such as (15) can
be written for any vector n € A. The A-TTR algorithm is
obtained by averaging all expressions available for f. One
writes

f@=c [ dnw sz (16)

A
using some even positive function w(n) and the normal-
ization constant ¢ defined by equation (7). From formulas

(14) and (15) for f(z,n), one gets then

fla) = /Q d o / L pe @0 hes)

) (17)
with
h(8,s) = c / dnw(n)d(n-s)é(n-0) ku(s-a), s-0=0.
A
(18)
Formula (17) is identical to (4) and (5). To get the expres-
sion (6) for h(#, s), one must note that s = (s-a)a in (18)

because s-0 = 0, s-n =0 and (0, n,a) form an orthogonal
basis in IR®. Since k, is even, one can write

ku(s-a) =ku(ls - af) = ku([s]]) (19)
and thus
= CLL(HQH) nw(n n-i n- s-60 =
h(Qa§) - ||§|| /J;d_ (_) 6(— ||§||)5(_ Q)a 2 Q 0
(20)

which reduces to (6). (Recall that A is symmetric.)
The frequency-domain expression of the filter is obtained
from (18) as follows

H(8,v) = / e ds e 2™V (g, 5)

—¢ / ., AT /A dnw(n) 8(n - 5)(n - 0) k(s - )

d§8—127r§-z 5@ .
5:6=0

=c/ dnw(n)é(n - ) 8) k(s - o)
A
- / dnw(n) dse 2™ L §(n - s) ku(s- ).
c(e)nA 3:6=0
(21)

Using s = ug—i—vé, with é = n, one gets

c / dnw(n)
c@na

du [ dv e7i2muretvrp) 5y ku(w)
R R

H(0,v) =

=c/ dnw(n) K, (v - a)
C(O)NA

(22)
where K, is the 1D Fourier transform of k,:
IR IR > o2
Ku(R) = { 0 otherwise (23)

Inserting the definition of K, in (22), one obtains equation
(9) since a = n X 6.
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III. SPECIFIC GEOMETRIES

In this section, we apply the A-TTR algorithm to specific
geometries, namely the full sphere and the equatorial band.

It is worth mentionning that the full sphere case had
been analyzed previously by Hazou [8] and Weng et al.
[9]. Both papers proposed an FBP algorithm, but differ-
ent approaches were used to solve the reconstruction prob-
lem. Weng et al. derived a spatial-domain convolution
filter, while Hazou derived a frequency-domain filter. No
links were established between the two algorithms. Below,
we will see that the filter in the A-TTR algorithm with
w(n) = 1 is identical to the filter in [9] when expressed in
the spatial domain and also identical to the filter in [8] when
expressed in the Fourier domain. The FBP algorithms in
[8] and [9] are therefore mathematically equivalent and can
be expressed as particular cases of the A-TTR algorithm.
As a consequence of this result, we observe that there is
no need to resort to the approximation in [9] for the im-
plementation of the algorithm since the convolution step
can be accurately implemented from the knowledge of the
Fourier transform of the filter, as described in section I1.B.

On the other hand, this paper is the first work presenting
a closed-form inversion formula for reconstruction from ex-
ponential X-ray projections sampled on an equatorial band.

A. The full sphere

In this section, 2 is the set of all possible unit vectors
in IR®. Mathematically, we write Q = $2 where S? is the
unit sphere:

s> ={em (g =1} (24)

In this particular case, one has A = Q = §2. Therefore,
the convolution filter (6) can be written in the form

he.s) = 2¢ D 2
IIs]| IIs]]

Taking w(n) = 1 for all n, which consists in equally weight-
ing each projection, and using equation (8) for k,, one gets

1 Eu(llsl))
2r ]

)- (25)

h(8,s) =
(26)

_cos(u|s[[) + plls]| sin(p]|s]])
8 ||s||? '

since ¢ = 1/4m (see equation (7)). This filter expression
was previously derived by Weng et al. [9].

Now, we calculate the frequency expression (9) of the
A-TTR filter for w(n) = 1. Recall first that H(8,v) = 0
when ||v|| < po/27. Below, we consider that ||v|| > po/27.
Let a and 8 be two unit orthogonal vectors perpendicular
to 6 such that a x 8 = 6. Using these vectors, angles w
and 1 can be introduced to write

= coswa-+sinwf,
sinwa —coswf,

= |lull(cospa +sinp ).

(27)

C*(g)n A

Fig. 3. Definition of angles w and 1 and illustration of a
possible w,, value. The dark curve on the unit disk is
the integration region (30).

See figure 3. These expressions lead to

v-(nx0) =y sin(w—1). (28)
Define wy, € [0,7/2[ such that
Sin wy, = ZW/T?Z|| . (29)
Since A = 52, one has
cr@)na= c(6)
= {choswg+sinwﬁ: (30)

|sin(w — )| > sinwm} .

Therefore, with w(n) = 1 and involving (7), (28), (29) and
(30), one obtains ¢ = 1/47 and for ||v|| > po/27

men- 2 [ o sin(es — )
8 |sin(w—1)|>sinw,,

= — dw | sin(w)]
8m ~/|Sﬂl_n(‘:J) |>sin wm,
= [l / dw sin w

4 .
= M cos w
2T ™
1 2
= o\lleP - 25
2n 472

(31)
(Recall from equation (11) that H(#,v) = 0 for ||v|| <
po/27.) This filter expression was previously derived by
Hazou [8]. The mathematical developments in section I1.C
prove that (31) is the Fourier transform of (26).

Note that the filter H(8,v) is here identical for all pro-
jection directions @ because w(n) = 1 was selected. Note
also that H(#,v) is not dependent on the polar angle 1) of v
(see equation (27)). Figure 4 compares the look of H(0,v)
in the attenuated and non-attenuated cases. The part only
for v € [0,7/2[ is displayed.
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Fig. 4. Frequency-domain filter for the full sphere. Top: no
attenuation. Bottom: with attenuation.

B. The equatorial band

In this section, Q is the equatorial band of aperture 6,
llustrated in figure la. Mathematically, we write

Qz{Q652 : |Q-gz|§sin00}. (32)
For this set, one has
A={Q€S2 : |Q-gz|200500}. (33)

See figure 1b. Equation (33) with (6) specifies the spatial-
domain expression of the A-TTR filter. Below, we give
details on the calculation of the frequency-domain expres-

sion of the filter. For this calculation, w(n) = 1 is assumed.

That is
1

47 (1 — coséy)
(see equation (7)). Recall first that H(8,v) = 0 when
llv]| < po/2m, i.e. H(O,v) needs only to be calculated
for ||v|| > po/2m. As in section III.A, we introduce unit
orthogonal vectors a and f such that a x 8 = 6. We also
define angles w and @ such that B

C

(34)

= coswa+sinwf,
sinwa — cosw 3,

= ||v/| (cosypa +sinyp B).

With these notations, one has as before

(35)

v-(nx0)= ||y sin(w - ) (36)

and

c*(0) = {ﬂz coswa+tsinwf : |sin(w—1)| > sinwm}
(37)

Fig. 5. Top: Description of the set C(#)NA. Bottom: Inter-
section of the unit sphere with the plane (8, 3). In both
figures the dark segment of line has the same length.
Expressing that condition leads to equation (40) for w;.

where

o
. (38)
2 |||

sin w,, =

To carry out the calculation of H(6,r) according to for-
mulas (9) and (10), note that

creyna=cen(cena). (39)

Figure 5(top) illustrates the region C(8) N A. This region

consists of two arcs of aperture 2w, diametrically opposed.

It is convenient to select the vectors a and S to be the

symmetry axes of C(8) N A as shown in figure 5(top). The
angle wy is defined by

cos 8y

(40)

cosws = sin 6
where 6 is the polar angle of §. See figure 5(bottom). Math-
ematically, one has

C(Q)ﬂA:{ﬂzcoswg—i—sinwg: |sinw|>cosws}

(41)
Therefore, involving equations (36), (37) and (41), one
finds

12

HOv) = o coste)

/ dolsin(w—v)|  (42)
w
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Fig. 6. Frequency-domain filter for the equatorial band -
# = 90°. Top: no attenuation. Bottom: with attenua-
tion.

where

| sin(w — )| > sin wyy, ,
| sinw| > cos wy

W={w€[0,27r[: } (43)

Or, equivalently

[l

HOv)=—F"—
@) 8w (1 —cosby) Jw

(44)

dw' |sin |

where

| sin w'| > sin wyy, ,

r_ ’ :
W' = {‘*’ € [0, 2n[: |sin(w’ + )| > cos w,

b
From these last two equations, one can easily check that
H(0,v) needs only to be known for + € [0,7/2[ because
replacing 1 by —1 or 9 + m does not change the filter
expression. Straightforward (but tedious) calculation of
the integral in (44) leads to the expression given in table 1
for H(@,v).

Note that the filter H(8,v) is here identical for directions
8 which have the same polar angle 8 but different azimuthal
angles. This is because w(n) = 1 was selected and Q is
symmetric about the z-axis. Figure 6 and 7 compare the
look of H(#,v) in the attenuated and non-attenuated cases
for & = 90° and € = 46° respectively, when the aperture
6o = 45°. In each case, only the part 1 € [0,7/2[ is dis-
played. The expression of the filter in the non-attenuated
case can be found in [12] or by taking the limit for p tend-
ing to zero in the expression of the A-TTR filter.

Figure 8 shows the reconstruction of a simulated phan-
tom modelling the heart. This phantom consists of three
ellipsoids, two of which model the ventricules with 20%

Fig. 7. Frequency-domain filter for the equatorial band -
f = 46°. Top: no attenuation. Bottom: with attenua-
tion.

Fig. 8. Equatorial band. Reconstruction of a simulated
phantom of the heart for 6y = 45 degrees and po =
0.0152mm~!. Left: vertical slice. Right: horizontal
slice.

of activity. The reconstruction was achieved on a grid
of 100® cubic voxels of side 1.5 mm, using §, = 45° and
o = 0.0152 mm~!. The set  was uniformly sampled in
spherical coordinates with a step of 3 degrees and the pro-
jections were sampled on grids of 1282 pixels of side 1.5 mm.
The quality of the reconstruction in figure 8 demonstrates
the exactness of the algorithm.

IV. CONCLUSIONS AND DISCUSSION

We have shown that a closed-form inversion formula can
be derived for 3-D image reconstruction from exponential
X-ray projections sampled on any subset of the unit sphere
that includes great circles.

The new algorithm, called the A-TTR algorithm, is of
FBP type. It has the particularity of dealing only with
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G, wm) | Wy, < Wy [ oo,
b < I —w Frws<m+Y—wn 4 sinw, cosy
2 s m Ftws>2m+Y —wm 2 €08 Wy, + 28in W, cos 1) + 28in 1) cos wy
THws<m+9Y—wm 2 CO8 Wy, + 2 8in wg cos P — 2 sin P cos wy
T Wy — Wy < T _ — 2
5~ Ws —wm <P < G |ws — Wi Ttw, 2T+ Y —wn 4 cos Wy,
7= ws —wm| <P <F 4 cos Wy, — 4sin 1) cos w; | 0

TABLE 1
Frequency-domain expression of the A-TTR filter for the equatorial band. The filter is expressed in the form
H(0,v) = G(tp,wn) ||v]|/87(1 — cos By). The table gives the values of G(v, w,,) according to the values taken by 4, w,
and w,,. The vector v = ||v|| (costp a + sintp 3). The table should be used only for ¢ € [0,7/2[ and ||v|| > po/27. For
[|lzl| < po/27, H(8,v) = 0. The dependence of H(8,v) on @ is burried in the definition of w, (see equation (40)).

projections that are on great circles in 2. Projections that
are not on great circles are not used in the A-TTR re-
construction. This is due to the way the algorithm was
derived. At this stage of our research, we do not know if
filters involving all measurements in ) can be designed for
exact FBP reconstruction. Further investigations are also
required for reconstruction from data sets that do not in-
clude great circles but may contain enough information for
exact reconstruction.

The A-TTR algorithm was applied to two specific geome-
tries: the full sphere and the equatorial band. The results
for the full sphere showed that the algorithms previously
proposed by Hazou [8] and Wang et al. [9] are mathemat-
ically identical. The results for the equatorial band were
original.

The noise properties of the algorithm were not analyzed
in this paper. From existing results in 2-D [6][7], it is
however reasonable to think that the A-TTR algorithm
does not handle noise in an optimal way. As in the 2-D
case, it is likely that the exponential weight in the back-
projection step excessively amplifies the noise, especially at
the periphery of the reconstructed image. Further work is
required for the development of inversion formulas which
handle noise in an optimal way similar to the 2-D method

developed in [6][7].
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