Home
Students - Teaching
Research
Publications People Links

BACK TO INDEX

Publications about 'Background subtraction'
Thesis
  1. B. Laugraud. Motion-aware temporal median filtering for robust background estimation. PhD thesis, University of Liège, Belgium, March 2020. Keyword(s): Background estimation, Background initialization, Background generation, Motion detection, Background subtraction, Optical flow, Semantic segmentation, Scene parsing, Median filtering, SBI dataset, SBMnet dataset, LaBGen, LaBGen-P, LaBGen-OF, LaBGen-P-Semantic, Computer vision, Image processing. [bibtex-entry]


  2. O. Barnich. Motion detection and human recognition in video sequences. PhD thesis, University of Liège, Belgium, September 2010. Keyword(s): Segmentation, Tracking, Background subtraction, Gait recognition. [bibtex-entry]


Articles in journal or book chapters
  1. A. Cioppa, M. Braham, and M. Van Droogenbroeck. Asynchronous semantic background subtraction. Journal of Imaging, 6(50):1-20, June 2020. Keyword(s): Background subtraction. [bibtex-entry]


  2. B. Laugraud, S. Piérard, and M. Van Droogenbroeck. LaBGen: A Method Based on Motion Detection for Generating the Background of a Scene. Pattern Recognition Letters, 96:12-21, 2017. Keyword(s): LaBGen, Background initialization, Background generation, Background subtraction, SBMI dataset, SBMC contest. [bibtex-entry]


  3. P.-M. Jodoin, S. Piérard, Y. Wang, and M. Van Droogenbroeck. Overview and Benchmarking of Motion Detection Methods. In T. Bouwmans, F. Porikli, B. Hoferlin, and A. Vacavant, editors, Background Modeling and Foreground Detection for Video Surveillance, chapter 24. Chapman and Hall/CRC, July 2014. Keyword(s): Background subtraction, Book. [bibtex-entry]


  4. M. Van Droogenbroeck and O. Barnich. ViBe: A Disruptive Method for Background Subtraction. In T. Bouwmans, F. Porikli, B. Hoferlin, and A. Vacavant, editors, Background Modeling and Foreground Detection for Video Surveillance, chapter 7, pages 7.1-7.23. Chapman and Hall/CRC, July 2014. Keyword(s): Background subtraction, ViBe, Book. [bibtex-entry]


  5. O. Barnich and M. Van Droogenbroeck. ViBe: A universal background subtraction algorithm for video sequences. IEEE Transactions on Image Processing, 20(6):1709-1724, June 2011. Keyword(s): ViBe, Background, Background subtraction, Segmentation, Motion, Motion detection, Software, Source code. [bibtex-entry]


  6. A. Borghgraef, O. Barnich, F. Lapierre, M. Van Droogenbroeck, W. Philips, and M. Acheroy. An evaluation of pixel-based methods for the detection of floating objects on the sea surface. EURASIP Journal on Advances in Signal Processing, 2010:11 pages, 2010. Keyword(s): Sea, Object detection, Motion detection, Background subtraction, Background, ViBe. [bibtex-entry]


Conference articles
  1. A. Cioppa, M. Van Droogenbroeck, and M. Braham. Real-Time Semantic Background Subtraction. In IEEE International Conference on Image Processing (ICIP), Abu Dhabi, United Arab Emirates, October 2020. Keyword(s): Background subtraction, Real time, Change detection, Semantic segmentation, Semantic background subtraction, DeepSport, CDNet 2014. [bibtex-entry]


  2. S. Piérard and M. Van Droogenbroeck. Summarizing the performances of a background subtraction algorithm measured on several videos. In IEEE International Conference on Image Processing (ICIP), Abu Dhabi, United Arab Emirates, October 2020. Keyword(s): Background subtraction, Evaluation, Performance, Summarization, Change detection, Classification performance, CDNet 2014. [bibtex-entry]


  3. M. Braham, S. Piérard, and M. Van Droogenbroeck. Semantic Background Subtraction. In IEEE International Conference on Image Processing, Beijing, China, pages 4552-4556, September 2017. Keyword(s): Background subtraction, Change detection, Semantic segmentation, Scene labeling, Scene parsing, Classification, Machine learning, Deep learning, CDNet 2014. [bibtex-entry]


  4. B. Laugraud and M. Van Droogenbroeck. Is a Memoryless Motion Detection Truly Relevant for Background Generation with LaBGen?. In Advanced Concepts for Intelligent Vision Systems (ACIVS), volume 10617 of Lecture Notes in Computer Science, pages 443-454, 2017. Keyword(s): Background generation, Background initialization, Background subtraction, Optical flow, Motion detection, Median filter, SBI dataset, SBMnet dataset, LaBGen, LaBGen-OF. [bibtex-entry]


  5. M. Braham and M. Van Droogenbroeck. Deep Background Subtraction with Scene-Specific Convolutional Neural Networks. In International Conference on Systems, Signals and Image Processing (IWSSIP), Bratislava, Slovakia, pages 1-4, May 2016. Keyword(s): Background subtraction, Deep learning, Machine learning, CDNet, Change detection, CDNet 2014. [bibtex-entry]


  6. M. Braham and M. Van Droogenbroeck. A generic feature selection method for background subtraction using global foreground models. In Advanced Concepts for Intelligent Vision Systems (ACIVS), volume 9386 of Lecture Notes in Computer Science, pages 717-728, 2015. Keyword(s): Background subtraction, Feature selection, Foreground model, Change detection, ViBe. [bibtex-entry]


  7. B. Laugraud, P. Latour, and M. Van Droogenbroeck. Time ordering shuffling for improving background subtraction. In Advanced Concepts for Intelligent Vision Systems (ACIVS), volume 9386 of Lecture Notes in Computer Science, pages 58-69, 2015. Keyword(s): Background subtraction, Time ordering, Time shuffling. [bibtex-entry]


  8. B. Laugraud, S. Piérard, M. Braham, and M. Van Droogenbroeck. Simple median-based method for stationary background generation using background subtraction algorithms. In International Conference on Image Analysis and Processing (ICIAP), Workshop on Scene Background Modeling and Initialization (SBMI), volume 9281 of Lecture Notes in Computer Science, pages 477-484, 2015. Note: Source code in C++ available. Keyword(s): Background subtraction, Background image, Source code. [bibtex-entry]


  9. S. Piérard and M. Van Droogenbroeck. A perfect estimation of a background image does not lead to a perfect background subtraction: analysis of the upper bound on the performance. In International Conference on Image Analysis and Processing (ICIAP), Workshop on Scene Background Modeling and Initialization (SBMI), volume 9281 of Lecture Notes in Computer Science, pages 56-65, September 2015. Keyword(s): Background subtraction, Evaluation, Performance analysis, Upper bound. [bibtex-entry]


  10. O. Absil, D. Mawet, C. Delacroix, P. Forsberg, M. Karlsson, S. Habraken, J. Surdej, P.-A. Absil, B. Carlomagno, V. Christiaens, D. Defrère, C. Gomez-Gonzalez, E. Huby, A. Jolivet, J. Milli, P. Piron, E. Vargas-Catalan, and M. Van Droogenbroeck. The VORTEX project: first results and perspectives. In Proc. SPIE, Adaptive Optics Systems IV, volume 9148, Montréal, Canada, July 2014. Keyword(s): VORTEX project, Optics, Coronograph, Background subtraction. [bibtex-entry]


  11. M. Braham, A. Lejeune, and M. Van Droogenbroeck. A physically motivated pixel-based model for background subtraction in 3D images. In IEEE International Conference on 3D Imaging (IC3D), Liège, Belgium, pages 1-8, December 2014. Keyword(s): Background subtraction, 3D, Range, Depth, Kinect. [bibtex-entry]


  12. M. Van Droogenbroeck and O. Paquot. Background Subtraction: Experiments and Improvements for ViBe. In Change Detection Workshop (CDW), in conjunction with CVPR, Providence, Rhode Island, pages 32-37, June 2012. Keyword(s): ViBe, Video, Background subtraction, Background modelling, Motion detection. [bibtex-entry]


  13. S. Piérard, A. Lejeune, and M. Van Droogenbroeck. A probabilistic pixel-based approach to detect humans in video streams. In International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Prague, Czech Republic, pages 921-924, May 2011. Keyword(s): Human, Detection, Silhouette, Background subtraction. [bibtex-entry]


  14. O. Barnich and M. Van Droogenbroeck. Design of a morphological moving object signature and application to human identification. In International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2009), pages 853-856, April 2009. Keyword(s): Video, Gait recognition, Mathematical morphology, Background subtraction. [bibtex-entry]


  15. O. Barnich and M. Van Droogenbroeck. ViBe: a powerful random technique to estimate the background in video sequences. In International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2009), pages 945-948, April 2009. Note: PDF available on the University site or at the IEEE. Keyword(s): ViBe, Video, Background subtraction, Background modelling, Motion detection. [bibtex-entry]


  16. S. Piérard, J. Leens, and M. Van Droogenbroeck. Real-time processing of depth and color video streams to improve the reliability of depth maps. In Proceedings of 3D Stereo MEDIA, Liège, Belgium, November 2009. Keyword(s): 3D, Depth, Range, Distance, ToF camera, Background subtraction, Motion detection, Segmentation. [bibtex-entry]


Miscellaneous
  1. M. Van Droogenbroeck, M. Braham, and A. Cioppa. Foreground and background detection method. United States Patent and Trademark Office, US 10,706,558 B2, 26 pages, July 2020. Keyword(s): Background subtraction, Semantic segmentation, Patent, Machine learning, Deep learning, Artificial intelligence, DeepSport. [bibtex-entry]


  2. M. Van Droogenbroeck, M. Braham, and S. Piérard. Foreground and background detection method. European Patent Office, EP 3438929 B2, July 2020. Keyword(s): Background subtraction, Semantic segmentation, Patent, Machine learning, Deep learning, Artificial intelligence. [bibtex-entry]


  3. M. Van Droogenbroeck, M. Braham, and S. Piérard. Foreground and background detection method. United States Patent and Trademark Office, US 10614736 B2, 16 pages, April 2020. Keyword(s): Background subtraction, Semantic segmentation, Patent, Machine learning, Deep learning, Artificial intelligence. [bibtex-entry]


  4. M. Van Droogenbroeck, M. Braham, and S. Piérard. Foreground and background detection method. Chinese Patent Office, CN109389618A, February 2019. Keyword(s): Background subtraction, Semantic segmentation, Patent, Machine learning, Deep learning, Artificial intelligence. [bibtex-entry]


  5. M. Van Droogenbroeck. La détection de mouvement dans une vidéo: histoire d'une technologie et d'un brevet. Oral presentation, 23 pages, Liège Creative, Liège, Belgium, May 2012. Keyword(s): ViBe, Background, Background subtraction, Inpainting, Deblur, Motion, Motion detection. [bibtex-entry]


  6. M. Van Droogenbroeck and O. Barnich. Visual Background Extractor. United States Patent and Trademark Office, US 8,009,918 B2, 18 pages, August 2011. Keyword(s): ViBe, Background, Background subtraction, Video analysis, Segmentation, Motion detection, Patent. [bibtex-entry]


  7. M. Van Droogenbroeck and O. Barnich. Visual background extractor. Japan Patent Office, JP 2011 4699564 B2, June 2011. Keyword(s): ViBe, Background, Background subtraction, Video analysis, Segmentation, Motion detection, Patent. [bibtex-entry]


  8. M. Van Droogenbroeck and O. Barnich. Visual background extractor. European Patent Office, EP 2 015 252 B1, 36 pages, 2010. Keyword(s): ViBe, Background, Background subtraction, Video analysis, Segmentation, Motion detection, Patent. [bibtex-entry]


  9. M. Van Droogenbroeck and O. Barnich. Visual background extractor. World Intellectual Property Organization, WO 2009/007198, 47 pages, January 2009. Keyword(s): ViBe, Background, Background subtraction, Video analysis, Segmentation, Motion detection, Video-surveillance. [bibtex-entry]



BACK TO INDEX




Disclaimer:

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All person copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.




Last modified: Tue Jul 14 12:42:55 2020